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Abstract 

Cornelia de Lange syndrome (CdLS), Rubinstein -Taybi syndrome (RSTS) and KBG syndrome are 

three distinct developmental human disorders. Variants in seven genes belonging to the cohesin 

pathway, NIPBL, SMC1A, SMC3, HDAC8, RAD21, ANKRD11 and BDR4, were identified in about 

70% of CdLS patients, suggesting that additional causative genes remain to be discovered. Two 

genes, CREBBP and EP300, have been associated with RSTS whereas KBG results from variants in 

ANKRD11. By exome sequencing, a genetic cause was elucidated in two patients with clinical 

diagnosis of CdLS but without variants in known CdLS genes. In particular, genetic variants in 

EP300 and ANKRD11 were identified in the two CdLS patients. EP300 and ANKRD11 pathogenic 

variants caused the reduction of the respective proteins suggesting that their low levels contribute to 

CdLS-like phenotype. These findings highlight the clinical overlap between CdLS, RSTS and KBG 

and support the notion that these rare disorders are linked to abnormal chromatin remodelling, 

which in turn affects the transcriptional machinery.  

Key words: Cornelia de Lange syndrome, Rubinstein -Taybi syndrome, KBG syndrome, 

chromatin remodeling, transcription 
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1 INTRODUCTION 

Cornelia de Lange syndrome (CdLS, MIM#s 122470, 300590, 610759, 614701, 300882) is a 

rare developmental disease characterized by pre- and postnatal growth retardation, facial 

dysmorphism, cognitive impairment and structural defects in multiple organs [Mannini et al., 

2013]. This wide phenotypic variability of CdLS depends on its wide genetic heterogeneity. In 

fact, seven CdLS-causative genes, (NIPBL, SMC1A, SMC3, HDAC8, RAD21, BRD4 and 

ANKRD11) have been identified up to now [Kline et al., 2018]. All of these genes encode the 

core components or associated factors of the cohesin complex, which plays multiple roles in 

biological processes such as sister chromatid cohesion, gene expression regulation, and DNA 

repair [Cucco and Musio 2016; Merkenschlager and Odom 2013]. The importance of cohesin in 

maintaining genome stability is proven by the identification of somatic cohesin variants in many 

human cancers [Kon et al., 2013; Sarogni et al., 2019a]. 

CdLS cell lines do not display sister chromatid cohesion abnormalities [Castronovo et al., 2009; 

Revenkova et al., 2009] indicating that the molecular mechanism of CdLS is not directly linked 

to the disruption of sister chromatid cohesion. Instead, considerable evidence suggests that 

CdLS etiopathology is due to the impaired ability of the cohesin to mediate other more dosage-

sensitive cellular functions such as transcriptional regulation. NIPBL, HDAC8 and SMC1A 

mutant CdLS cell lines display transcriptional dysregulation; being conservative, the changes in 

gene expression are typically less than 1.5-fold [Cukrov et al., 2018; Deardorff et al., 2012; Liu 

et al., 2009; Mannini et al., 2015]. Interestingly, this modest transcription dysregulation is in 

agreement with proteomic published data [Gimigliano et al., 2012]. Furthermore, hundreds of 

genes are weakly transcriptionally dysregulated in the mouse, Drosophila and zebrafish CdLS 

model organisms [Kawauchi et al., 2009; Muto et al., 2011; Newkirk et al., 2017; Schaaf et al., 

2009]. These observations further support the notion that CdLS phenotype results from the 

collective action of many mild perturbations [Sarogni et al., 2019b] . The molecular basis 
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underlying gene dysregulation in CdLS is not clearly defined. It has been shown that mutant 

cohesin makes the binding chromatin/cohesin more stable and affects the recruitment of RNA 

polymerase II  (Pol II) at both promoter and gene body of transcriptional active genes [Mannini 

et al., 2015; Revenkova et al., 2009].  

The seven CdLS genes account for about 80% of cases, so the etiopathology of the remaining 

30% of the patients with a clinical diagnosis of CdLS is unknown [Kline et al., 2018; Ramos et 

al., 2015]. However, a correct diagnosis of CdLS is readily made. Several observations indicate a 

high percentage of mosaicism in known CdLS genes that were previously excluded by Sanger 

sequencing using DNA obtained from peripheral blood samples [Ansari et al., 2014; Baquero-

Montoya et al., 2014; Castronovo et al., 2010; Huisman et al., 2013; Pozojevic et al., 2018]. 

Furthermore, patients presenting CdLS or CdLS-like phenotype such as KBG (OMIM 148050), 

Wiedemann-Steiner (OMIM 605130), or Rubinstein–Taybi (RSTS2, OMIM 613684) have been 

described, notably, to harbor variants in chromatin-associated factors other than cohesin genes 

[Ansari et al., 2014; Aoi et al., 2019; Parenti et al., 2017; Woods et al., 2014; Yuan et al., 2015].  

Here we report on the clinical and molecular characterization of two patients with features 

overlapping CdLS, for whom the analysis CdLS-causative genes did not identify any pathogenic 

variant.  The subsequent use of exome sequencing allowed us to identify heterozygous variants in 

the ANKRD11 and EP300 genes.  In addition, pathogenic variants led to low levels of both 

ANKRD11 and p300 proteins suggesting that this could contribute to the atypical form of CdLS.  

ANKRD11 and p300 are involved in gene expression regulation by chromatin remodeling [Chen et 

al., 2008; Gallagher et al., 2015]. This report, presenting phenotypic overlap between CdLS, KBG 

and RSTS, provides more evidence for the possibility that three distinct disorders share a common 

pathogenetic molecular mechanism. 
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2 MATERIALS AND METHODS 

2.1 Subjects 

All individuals in this study were examined by clinical geneticists and found to have clinical 

features consistent with CdLS. Clinical details were retrospectively reviewed based on recent 

clinical criteria [Kline et al., 2018] (Table 1). Samples were collected after informed consent for 

research purposes, in accordance with the Declaration of Helsinki. Additional consent was obtained 

for the publication of photographic material identifying patients. Approval was granted by Children 

Ethics Committee (CEP, protocol number 130/2016). All probands ascertained as CdLS were 

previously screened and were negative for pathogenic variants in genes responsible for CdLS.  

2.2 Exome sequencing  

DNA was extracted from peripheral blood lymphocytes by a standard non-organic extraction 

procedure. SureSelect Human All Exon V7 kit (Agilent) was used for library preparation and 

exome enrichment, targeting about 60 Mb of human exonic content. Samples were quantified 

and quality tested using the Qubit 2.0 Fluorometer (Invitrogen). Libraries were processed with 

Illumina cBot (Illumina) and sequenced on HiSeq2500 (Illumina), pair-end with 125 cycles per 

read. Reads were aligned to the UCSC Genome Browser hg19 reference sequence with the 

Burrows-Wheeler Aligner and variant calling and genotyping were performed with the Genome 

Analysis Toolkit [Li and Durbin 2009; McKenna et al., 2010]. Variants were annotated by 

ANNOVAR [Wang et al., 2010] and filtered with NCBI dbSNP v.151, the 1000 Genomes 

Project, NHLBI-ESP 6500 exome project and AVSIFT [Liu et al., 2011].  

2.3 Antibodies  

Commercially available antibodies used in this study are as follows: Actin (A300-491A, 1:5,000 

dilution, Bethyl Laboratories), ANKRD11 (ab50852, against 50-200 region, 1:100 dilution, 

Abcam), p300 (A300-358A, against 950-1000 region, 1:10,000 dilution, Bethyl Laboratories). 
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ImageJ tool was used on scanned western blot images [Rueden et al., 2017; Schneider et al., 

2012].  

2.4 Western blotting 

Whole protein extracts were obtained from lymphoblastoid cell lines. Proteins were resuspended 

with lysis buffer and protein concentration was estimated by the Bradford Protein Assay 

(Thermo Scientific). Proteins, 60 µg per lane, were separated by SDS-PAGE. The proteins were 

transferred to nitrocellulose membranes (Amersham) and incubated with the primary antibody. 

After removal of the unbound primary antibody, membranes were incubated with secondary 

antibody-peroxidase conjugate (Sigma), processed for detection by chemiluminescence 

(Amersham) and imaged on Biomax film (Kodak). The AG09393 and AG14730 lymphoblastoid 

cell lines (purchased from Coriell Institute) were used as reference for patient A and patient B 

respectively. 

2.5cDNA synthesis and quantitative real-time PCR 

cDNA was synthesized with SuperScriptTM II reverse transcriptase using oligo dT (Invitrogen). 

Quantitative real-time PCR (RT-qPCR) analyses were performed using Rotor Gene 3000 (Corbett). 

Reactions were run in triplicate and normalized with respect to GAPDH. The AG09393 and 

AG14730 lymphoblastoid cell lines were used as reference. Since no difference was found in 

control cell lines, data was pooled.  Primers used for mRNA expression analysis are listed in Table 

S1.  

2.6 Statistical analysis 

Data were analyzed by Student’s t-test. P-values of < 0.05 were considered statistically significant. 



7 

3 RESULTS 

3.1 Patient ascertainment 

Patient A (Figure 1a) is the second child of an unrelated healthy couple. During the first months of 

life she showed feeding difficulties, with persistent crying, regurgitation and poor weight gain. 

Gastroesophageal reflux symptoms manifested at night. She showed micrognathia, hirsutism and 

synophrys. Her hands and feet were normal with absence of broad thumb/hallux and large distal 

phalanges. In addition, she displayed profound hearing loss, both sensorineural and conductive. At 

the age of 6 years, neuropsychiatric evaluation showed moderate-severe intellectual disability with 

an IQ of 49 (based on the Leiter-R scale) corresponding to a mental age of 36 months. Her growth 

measurements were small for age. Her language was almost completely absent (producing about 20 

words) and her personal autonomy was very limited. Finally, oppositional behaviors and low 

threshold of frustration tolerance were also present.  

Patient B (Figure 1b) is the first child of an unrelated healthy couple. At birth, the proband had 

facial dysmorphism, long philtrum, thin lips, micrognathia, low anterior hairline, arched 

eyebrows, long eyelashes, synophrys, small hands, and hirsutism. At age 4 years, he was 

operated on for atrial septal defect. He also showed bilateral hypoacusis.  His growth 

measurements were normal for age. At the age of 7 years, neuropsychiatric evaluation showed 

moderate intellectual disability, specific behavioral issues such as aggression, defiance, extreme 

shyness, perseveration, and obsessive–compulsive behaviors. Both patients (A and B) were 

classified as non-classic CdLS (Table 1) when their clinical features were re-evaluated based on 

clinical diagnostic criteria [Kline et al., 2018]. 

3.2 Exome sequencing  

Since Sanger sequencing could not identify a disease-causing variant in CdLS-causative genes in 

any of the two patients, we used exome sequencing to sequence the patients’ DNA.   
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Patient A was found to carry the c.4408_4409insA truncating frameshift variant in heterozygous 

status in exon 27 of the EP300 gene (RefSeq NM_001429.4) predicting a truncated protein 

sequence of 1471 amino acids (aa), lacking part of the KAT domain,  instead of the full-length 

2414-aa p300 protein, p.(Met1470AsnfsTer3). 

This pathogenic variant was confirmed as de novo by Sanger sequencing (Figure S1a).  

Patient B carried the pathogenic variant c.3224_3227del in heterozygous status in the ANKRD11 

gene (RefSeq NM_013275.6) leading to p.(Glu1075GlyfsTer242) amino acid change. Neither 

parent had the variant indicating a de novo event (Figure S1b).   

We next investigated the effect of the identified pathogenic variants on protein expression. 

Western blotting experiments showed that both c.4408_4409insA and c.3224_3227del 

pathogenic variants led to low levels of p300 and ANKRD11 respectively (Figure 2a-2b, Figure 

S2a-S2b). RT-qPCR results revealed excellent agreement with western blotting experiments 

(Figure S3). 



9 

4 DISCUSSION 

Exome sequencing has quickly become the method of choice for identifying non-high frequency 

variations such as rare and de novo pathogenic variants in protein-coding exomes. In this study, 

exome sequencing was employed for the mutational screening of two probands with a clinical 

diagnosis of CdLS spectrum. By using this approach, we were able to identify the 

c.4408_4409insA and c.3224_3227del pathogenic variants in the EP300 and ANKRD11 genes

that are associated with RSTS and KBG syndromes respectively.  To our knowledge the variant 

in the EP300 has been described for the first time while that in the ANKRD11 gene has been 

recently reported in a patient with Coffin-Siris overlapping syndrome [Miyatake et al., 2017] 

adding more evidence that distinct disorders share a common genetic mechanism.  

RSTS is a rare genetically heterogeneous multiple-anomaly syndrome and it is caused by 

pathogenic variants in the CREBBP (RSTS1) and EP300 (RSTS2) genes. According to HGMD 

(update to October 2019), 21.3% (84 out of 394 variants) of clinically recognized RSTS cases 

carry EP300 pathogenic variants. EP300 variants have been associated with a milder phenotype, 

especially regarding the skeletal defects [Bartholdi et al., 2007; Bartsch et al., 2010; Fergelot et 

al., 2016; Foley et al., 2009; Tsai et al., 2011]. KBG syndrome, a rare genetic disorder, is 

associated with loss of function variants in the ANKRD11 gene, which encodes a chromatin 

regulatory protein [Gallagher et al., 2015].  Our finding that pathogenic variants lead to low 

levels of both p300 and ANKRD11 proteins suggests that this phenomenon results in an atypical 

form of CdLS. In this context, the EP300 and ANKRD11 pathogenic variants lead to premature 

termination codons, mRNA could be degraded by a nonsense-mediated decay (NMD) 

mechanism to avoid the translation and accumulation of truncated proteins. 

Although classic CdLS, KBG and RSTS are unique conditions that are unlikely to be confused 

with one another, the differential diagnosis is more complicated in borderline-mild phenotypes 

[Avagliano et al., 2020; Kline et al., 2018]. Until now, nine CdLS-like patients carrying variants 
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in the EP300 or ANKRD11 genes have been described [Ansari et al., 2014; Aoi et al., 2019; 

Parenti et al., 2016; Woods et al., 2014] and clinical features were reported for six of them [Aoi 

et al., 2019; Parenti et al., 2016; Woods et al., 2014]. Detailed findings of these CdLS-like 

patients, including our two, are shown in Table S2 and Table S3. Most of the pathogenic variants 

are deletions, with the exception of two single nucleotide changes and a nucleotide insertion. 

Clinical re-evaluation of our patients  showed that some clinical signs, such as cognitive 

impairment, synophrys, microcephaly, and thin upper lip,  and the of absence of macrodontia or 

fused incisors were suggestive for the clinical diagnosis of CdLS. Since increasing data shows 

that CdLS, KBG and RSTS share these phenotypic features [Ansari et al., 2014; Aoi et al., 2019; 

Parenti et al., 2016; Woods et al., 2014]  the  testing for both EP300 and ANKRD11 variants in 

probands with features of CdLS should be warranted and included on panels for CdLS testing.  

The finding that ANKRD11 and EP300 pathogenic variants cause a phenotype that mimics CdLS 

is intriguing. p300 functions as histone acetyltransferase that regulates transcription via 

chromatin remodeling and as a transcription co-factor by bridging transcription factors and 

intergenic RNA polymerase II [Chen et al., 2008; Roelfsema et al., 2005]. Furthermore, it has 

been shown that p300, NIPBL, and the core cohesin proteins co-occupy enhancer regions in 

different cell types [Chen et al., 2012; Kagey et al., 2010].  Also ANKRD11 is a chromatin-

associated/modifying protein that is  particularly involved in the inhibition of the transcriptional 

activation of nuclear receptor targets genes via the recruitment of histone deacetylase proteins 

[Gallagher et al., 2015; Sirmaci et al., 2011; Zhang et al., 2004]. Altogether, these observations 

indicate that perturbations in chromatin remodeling pathways, which include cohesin, and the 

EP300 and ANKRD11 genes, lead to human diseases and that their phenotypic effects might 

mimic one another. In this view, overlapping disorders can develop from a common genetic 

mechanism of disrupting the transcriptional machinery. This notion is supported by the 

observation that CdLS and CdLS-like cell lines display gene expression dysregulation [Deardorff 
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et al., 2012; Izumi et al., 2015; Liu et al., 2009; Mannini et al., 2015; Olley et al., 2018]. In 

summary, pathogenic variants in the EP300 and ANKRD11 can result in a CdLS-like phenotype 

overlapping that of other chromatin-dysregulated disorders.  
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FIGURE LEGENDS 

Figure 1 Facial features of the two patients with a presumptive diagnosis of CdLS. (a) Picture of 

EP300-mutated patient. (b) Picture of ANKRD11-mutated patient. 

Figure 2 Effect of pathogenic variants on protein expression.  (a) Western blotting showing that 

c.4401_4402insA truncating frameshift leads to down-regulation of full-length p300 protein. (b)

The c.3224_3227del pathogenic variant causes low level of ANKRD11 protein in affected subject 

when compared to a control subject. The lowest ANKRD11 band was considered for ImageJ 

analysis while the high molecular weight band might correspond to a post-translational modification 

form. 

SUPPLEMENTARY FIGURE LEGENDS 

Figure S1 Sanger sequencing confirming pathogenic variants identified by exome sequencing. 

(a) Electropherogram showing c.4408_4409insA truncating frameshift variant in the EP300 gene

(RefSeq NM_001429.4). (b) Electropherogram showing c.3224_3227del pathogenic variant in 

the ANKRD11 gene (RefSeq NM_013275.6). The nucleotide sequences were normal in their 

parents. 

Figure S2 Effects of pathogenic variants on protein expression. (a) Quantification of p300 level 

with respect to Actin. (b) Quantification of ANKRD11 level with respect to Actin. 

Figure S3 Effects of pathogenic variants on mRNA expression of EP300 and ANKRD11.  * p< 0.05 
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Table 1. Clinical features scored according to diagnostic criteria. 

Cardinal features (2 points each if present) 

Patient A Patient B 

Mutated gene EP300 ANKRD11 

Synophrys (HP:0000664) and/or thick eyebrows 
(HP:0000574)  

2 2 

Short nose (HP:0003196), concave nasal ridge 
(HP:0011120) and/or upturned nasal tip (HP:0000463) 

- - 

Long (HP:0000343) and/or smooth philtrum 
(HP:0000319) 

2 2 

Thin upper lip vermilion (HP:0000219) and/or 
downturned corners of mouth (HP:0002714) 

2 2 

Hand oligodactyly (HP:0001180) and/or adactyly 
(HP:0009776) 

- - 

Congenital diaphragmatic hernia (HP:0000776) 

- - 

Suggestive features (1 point each if present) 

Global developmental delay (HP:0001263) and/or 
intellectual disability (HP:0001249) 

1 1 

Postnatal growth retardation (<2 sD) (HP:0008897) 

- - 

Microcephaly (prenatally and/or postnatally) 
(HP:0000252) 

1 1 
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Small hands (HP:0200055) and/or feet (HP:0001773) 

- 1 

Short fifth finger (HP:0009237) 

- - 

Hirsutism (HP:0001007) 

1 1 

Clinical score     

9 10 

Clinical score 
• ≥11 points, of which at least 3 are cardinal: classic CdLs
• 9 or 10 points, of which at least 2 are cardinal: non-classic CdLs
• 4–8 points, of which at least 1 is cardinal: molecular testing for CdLS
indicated
• ≤ 4 points: insufficient to indicate molecular testing CdLs
• - denotes absence of feature
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