1,972 research outputs found

    Continuum description of finite-size particles advected by external flows. The effect of collisions

    Get PDF
    The equation of the density field of an assembly of macroscopic particles advected by a hydrodynamic flow is derived from the microscopic description of the system. This equation allows to recognize the role and the relative importance of the different microscopic processes implicit in the model: the driving of the external flow, the inertia of the particles, and the collisions among them. The validity of the density description is confirmed by comparisons of numerical studies of the continuum equation with Direct Simulation Monte Carlo (DSMC) simulations of hard disks advected by a chaotic flow. We show that the collisions have two competing roles: a dispersing-like effect and a clustering effect (even for elastic collisions). An unexpected feature is also observed in the system: the presence of collisions can reverse the effect of inertia, so that grains with lower inertia are more clusterized.Comment: Final (strongly modified) version accepted in PRE; 6 pages, 3 figure

    Kinematics and strain analyses of the eastern segment of the Pernicana Fault (Mt. Etna, Italy) derived from geodetic techniques (1997-2005)

    Get PDF
    This paper analyses the ground deformations occurring on the eastern part of the Pernicana Fault from 1997 to 2005. This segment of the fault was monitored with three local networks based on GPS and EDM techniques. More than seventy GPS and EDM surveys were carried out during the considered period, in order to achieve a higher temporal detail of ground deformation affecting the structure. We report the comparisons among GPS and EDM surveys in terms of absolute horizontal displacements of each GPS benchmark and in terms of strain parameters for each GPS and EDM network. Ground deformation measurements detected a continuous left-lateral movement of the Pernicana Fault. We conclude that, on the easternmost part of the Pernicana Fault, where it branches out into two segments, the deformation is transferred entirely SE-wards by a splay fault

    Trehalose counteracts the dissociation of tetrameric rabbit lactate dehydrogenase induced by acidic pH conditions

    Get PDF
    The lactate dehydrogenase from rabbit skeletal muscle (rbLDH) is a tetrameric enzyme, known to undergo dissociation when exposed to acidic pH conditions. Moreover, it should be mentioned that this dissociation translates into a pronounced loss of enzyme activity. Notably, among the compounds able to stabilize proteins and enzymes, the disaccharide trehalose represents an outperformer. In particular, trehalose was shown to efficiently counteract quite a number of physical and chemical agents inducing protein denaturation. However, no information is available on the effect, if any, exerted by trehalose against the dissociation of protein oligomers. Accordingly, we thought it of interest to investigate whether this disaccharide is competent in preventing the dissociation of rbLDH induced by acidic pH conditions. Further, we compared the action of trehalose with the effects triggered by maltose and cellobiose. Surprisingly, both these disaccharides enhanced the dissociation of rbLDH, with maltose being responsible for a major effect when compared to cellobiose. On the contrary, trehalose was effective in preventing enzyme dissociation, as revealed by activity assays and by Dynamic Light Scattering (DLS) experiments. Moreover, we detected a significant decrease of both K0.5 and Vmax when the rbLDH activity was tested (at pH 7.5 and 6.5) as a function of pyruvate concentration in the presence of trehalose. Further, we found that trehalose induces a remarkable increase of Vmax when the enzyme is exposed to pH 5. Overall, our observations suggest that trehalose triggers conformational rearrangements of tetrameric rbLDH mirrored by resistance to dissociation and peculiar catalytic features

    Application of differential SAR interferometry for studying eruptive event of 22July 1998 at Mt.Etna

    Get PDF
    One of the main objectives of the project “Development and application of remote sensing methods for the monitoring of active Italian volcanoes” is directed to an operational use of differential interferometry as a tool for volcano monitoring. A first step to achieve this goal is to test commercial software in order to evaluate the most suitable for the project purposes. For testing software, SAR images collected by ERS2 from May 98 to August 98, before and after the strong eruptive event occurred on 22 July 98 at Voragine crater of Etna, have been selected. The explosive event was classified sub-plinian producing a 12 km high eruptive column and lapilli fell on land as far as 70 km south-eastward along the dispersal axis. Pre, post and across event image pairs have been processed. In particular the pair 13 May 98-22 July 98, 22 July 98-26 August 98, 13 May 98-26 August 98 are used for testing respectively pre, post and across event. In first analysis, the fringes in the differential products show a positive elevation trend in the summit area of the volcano. In particular, an increased of about 1,5 fringes in the period pre-event, and a decrement of 1 fringe in the period post-event is observed. This result is agreement whit field of deformation expected in such kind of event, confirming that the interferometric processing tool used id suitable for the purpose of the project

    Effects of mole fraction variations and scaling on total variability in InGaAs MOSFETs

    Get PDF
    Variability is one of the major roadblocks for III-V semiconductors in nanoscale devices, according to the recent International Roadmap for Devices and Systems (IRDS). A particular concern is the detrimental effect of variability of threshold voltage due to channel compositional variations. In this paper, we investigate the impact of this variability source and the effects of scaling on the performance of Dual-Gate-Ultra-Thin-Body (DG-UTB) In0.53Ga0.47As MOSFETs. We model mole fraction variations in terms of the Indium content by taking into account the spatial inhomogeneity of the channel and the corresponding bandgap variations, analyzing the effects on threshold voltage variability. We thus define a variability source, i.e., Band Gap Fluctuation (BGF), and we compare the associated variability with the ones from other important sources, namely, Random Dopant Fluctuation (RDF), Work Function Fluctuation (WFF), Body- and Gate-Line Edge Roughness (B-LER and G-LER). We then define three corner cases for mole fraction variations to determine worst-case variability. Finally, the impact of scaling on variability is assessed by comparing results for two technology nodes on the linear and saturation threshold voltage, V-T,V-lin,V- V-T,V-sat, on-current, I-ON, leakage current, I-OFF, and linear and saturation sub-threshold slope, SS. We find that although scaling has no impact on BGF-induced V-T variability, it increases the total V-T, lin variability as well as that for I-ON and I-OFF

    Modelling ground deformations in volcanic areas by using SAR interferograms

    Get PDF
    The inversion problem dealt with is the identification of the parameters of a magma-filled dike which causes observable changes in ground deformation data. It is supposed that ground deformation data are measured by using the SAR (Synthetic Aperture Radar) Interferometry technique. The inversion approach, which is carried out by a systematic search technique based on the Simulated Annealing (SA) optimization algorithm, guarantees a high degree of accuracy. The results given in the paper are supported by experiments carried out using an interactive software tool developed ad hoc, which allows both direct and inverse modeling of SAR interferometric data related to the opening of a crack at the beginning and throughout a volcanic activity episode

    Irreversible effects of memory

    Full text link
    The steady state of a Langevin equation with short ranged memory and coloured noise is analyzed. When the fluctuation-dissipation theorem of second kind is not satisfied, the dynamics is irreversible, i.e. detailed balance is violated. We show that the entropy production rate for this system should include the power injected by ``memory forces''. With this additional contribution, the Fluctuation Relation is fairly verified in simulations. Both dynamics with inertia and overdamped dynamics yield the same expression for this additional power. The role of ``memory forces'' within the fluctuation-dissipation relation of first kind is also discussed.Comment: 6 pages, 1 figure, publishe
    • …
    corecore