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Continuum description of finite-size particles advected by external flows: The effect of collisions
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The equation of the density field of an assembly of macroscopic particles advected by a hydro-dynamic flow
is derived from the microscopic description of the system. This equation allows one to recognize the role and
the relative importance of the different microscopic processes implicit in the model: the driving of the external
flow, the inertia of the particles, and the collisions among them. The validity of the density description is
confirmed by comparisons of numerical studies of the continuum equation with direct simulation Monte Carlo
simulations of hard disks advected by a chaotic flow. We show that the collisions have two competing roles: a
dispersinglike effect and a clustering efféeven for elastic collisionsAn unexpected feature is also observed
in the system: the presence of collisions can reverse the effect of inertia, so that grains with lower inertia are
more clusterized.
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I. INTRODUCTION The paper is organized as follows. In the following sec-

The transport of inertial particles in hydrodynamic flows tion we present our model and derive an explicit expression
has recently attracted the attention of many researdigrs for the velocity of the grains. In Sec. Ill we obtain the evo-
The great number of applications of this topic, including,'Utlon equation for the density field of particles. Next, in Sec.
e.g., ecological problemsgdynamics of plankton popula- [V we present some of the most relevant features of this
tions), geophysical processgsloud formation, transport of density equation; in particular, we discuss the relative impor-
pollutants in the atmosphere, or the oceans chemical en- tance of its different terms. In Sec. V we numerically check
gineering(chemical reactions in turbulent or chaotic flgws our theoretical results and, finally, in Sec. VI we summarize

constitutes the main reason for this interest. the paper.

In most of these works, despite considering finite-size par-
ticles, the effect of the colliding processes among particles || EQUATIONS OF MOTION AND STOCHASTIC
was completely disregarded. However, in some applications, TREATMENT OF COLLISIONS

as exemplified by rain initiation in cloudg], the role of

collisions seems to be crucial. Thus, in order to take them The equations of motion dfl granular particles driven by
into account, in a recent papé8] we have introduced a an external velocity fieldi(r ,t) are given by

simple model of a granular materiadl particles subject to

N
mutual collisions(elastic or inelasti; advected by a two- dvi() 1 PR _
dimensional chaotic flow(gravity is not considered The at Tp[v,(t) u(ri(®,9]+ yj%%{[v'(t)
model equivalently describes inertial particles colliding R ~ "
among them and immersed in a chaotic flow, with the density = V(O] -7 O ) 8t -t), (1)
of the particles higher than that of the fluid. A novel result
found in Ref.[3] is that collisions may strongly modify the dri(t)
scenario of the so-calledreferential concentratiorj1] by T‘Vi(t)' (2)
which particles in turbulent flows, in the absence of colli-
sions, tend to aggregate in specific spatial areas. wherei=1,... N, v; is the velocity of particle, r; its posi-

In this paper we derive from first principles the equationtion, 7, is the Stokes timey=(1+r)/2,r [0, 1] is the res-
for the macroscopic density of graiae indistinctly speak titution coefficient (r<1, with r=1 for elastic collisiong
of grains or colliding particlesfor the model of Ref[3] (but ~ 1;;(t) is the unitary vector joining the centers of particies
with a flow not necessarily chaojiclts properties are dis- andj at timet (in the following we will also use the notation
cussed and, in particular, we show how it can explain twa(r,r’) to denote a unitary vector joining vectarsandr’),
different effects of collisions: dispersion and clustering. Indis the Dirac delta, and Witlfj we denote the times at which
addition, the macroscopic equation helps us to understangarticlesi andj make theirkth collision. The first term in Eq.
another surprising feature of the model, observed in the difl) indicates the inertia of the particles and the second one
rect simulation Monte Carl@DSMC) simulations, which we shows how the velocity of a particle is modified because of
call reversed clusteringin the presence of collisions lower the collisions with the rest. Without collisions Eq4) and
values of inertia can induce more aggregation of the par¢2) are the equations of motion df spherical particles where
ticles. the Bernoulli term, the added-mass term, the Basset-
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Boussinesq history integral term, and the Faxen corrections ~key 513y = oy _in s _m

are neglected. Thus, the advection of the particles is model- (1) = 2D"3qolt -t )5”2 % -t

ized taking only the Stokes drag as the relevant term in the ,

Maxey and Riley equationi@]. This is a consistent approxi- =2D & 5ot = t)n(ri(t),1), (7)

mation when the particles of the granular system are mucyheren(r(t),t) is such than(r,t)drdt is the average num-

heavier than those of the flui®], which is the case that we per of collisions that a particle positioned inundergoes at

are considering. It is also fundamental to mention that thgjme t. D’ and D" are constants absorbed at the end in the

relevant time scales of the problem were identified in Ref.gefinition of D, which is another constant of ordef/T* (o

[3] to be the Fy_plcal' time of the flowr, the Stokes tlme'p’ is the diameter of the particlesThis last statement comes

the mean collision timey, and, in the case of a chaotic flow, fom comparing the full expression at ordef; in Eq. (5)

the time 7, given by the inverse of the Lyapunov exponentyith Eq. (7).

of the flow. _ _ _ Finally, denoting#(t)=/Dn(r;(t),t) 7(t) we arrive to
In order to obtain a close expression foKt) we first

nondimensionalize time and velocities taking as unit scales _ du

the typical timeT and typical lengthL of the flow, i.e.,t vi() =u(ri(t), ) - (LFT 779; Ek'{[u(ri)

—t/T, u—uT/L, andv —vT/L. Thenv;(t) will be obtained

as a formal expansion in the nondimensional paramster —u(ry] -ﬁij(t)}ﬁij(t)5(t—tikj) + rﬁV’Dn(ri(t),t)ni(t)
=7,/ T. From Eq.(1) one has straightforwardly + @(7[3)), (8)
vi(t) =u(r(t),t) - m,dvi/dt,— 77-p2 > v where 5 is a Gaussian white noise with zero mean and cor-
ik relations(7(t) 7}(t')) = 263 S(t-t').
= v;) - Ay (O (B 8(t - t!}), 3) At this point we make the hypothesis that E£8) is valid

for any 7, in some sense, the higher-order te@@rg) just
then this expression of; is itself substituted on the right- renormalize the diffusion coefficient. This is supported by

hand side(rhs) of Eq. (3) and one obtains to ordeﬁ, the fact that for larger, the noise term in Eq.8) dominates,
du which is consistent with the fact that in Ed) for 7, large
vi(t) =u(ri(t),) = 7p—- - ’)/TpE > {[u(ry) the dynamics of the particles is mainly driven by collisions.
dt ik Thus, this hypothesis finally states that the net effect of the
—u(e . A (DA _tk - 3 colliding processes is properly modelized by the noise term
u(ry)] - A (O (1) 8t - ty) + 7‘2’7"(0 + (7). @ appearing in Eq(8). This will also be checked in Sec. V.
4
If one writes down explicitlys(t), IIl. EVOLUTION EQUATION OF THE DENSITY
FIELD
L, d ‘ o . . . .
OE —a " v > d—{[u(ri) —u(r)]st -t} Our aim is to obtain the evolution equation of the density
t j ok \at field of particles. For this we closely folloy7,6] and define
d p(r =3 pi(r,t)==; &(ri(t)-r). Using Ito calculug7]
+ ot - ti‘})d—[U(ri) - U(rj)]> +yP2 2 ot t)
o - Vo lau ]+ RV
(2 wimwat-t) -2 3 - vat- 1), ’
I m n p D
(5) + TSEVZ[n(r,t)pi]VTpV : [PiE 2 ALu(r,p
=1 k

one can see that it is a very complicated expression taking

into account collisions among different particles. Neglecting —u(r;(v),p]- ﬁ(r’rj)}ﬁ(r,rj)g(t_t:ﬁ):|
the first term in Eq(5) one can assume that it is some kind !
of effective stochastic term acting at the colliding tinféss

2 =y [ o
hypothesis will be checked in Sec)M.e., it denotes a ran- ~ VDV - [pivn(r,Ha(t)]. )
dom kick on a particle every time it collides: We assume now that the local free time between colli-
N sions, 7.(r ,t), is everywhere smaller than any other charac-
2 () = St—t)z(1), 6 teristic time of the system, and that the mean free path
7 E% (- 6&W © \(r,t) is also smaller than any other characteristic spatial

) ) ) ) . scale. With these hypotheses we will proceed by integrating
WPereQ(t) is a Gaussian white noise with zero mean andevery term in Eq(9) over small space-time cellsVAt (with
(GOEA))=2D"8(t-1') 6 dim (the superindex denotes vec- this integral normalized by this spatiotemporal volyrsech

tor component that 7(r ,t) <At<min{r,, 1,7}, and)xﬁ(r D) <AV<AZ, with
It is now easy to obtain thats(t))=0, and the correla- \ the minimum typical space scale of the system. Assuming
tions that the fields andu are constant over the above space-time
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cells, the integration oveAVAt (normalized with this vol- Then we approximate X, s(r’ ,rj(tﬁ),tﬁ)
uma.and the summation over indexof the left-hand side =~ (At/r)s(r’ T;(t),t) becauseAt/r, is approximately the
(lhs) in Eq. (9), and of the first two terms on the rhs can be nymber of colliding events in the time intervAt, and the

easily calculated. sum over(j), with the help of the properties of the Dirat
More complicated are the other terms. Let us study themy,ction can be written as

in detail beginning with the diffusion terifthe third on the
rhs of EQ.(9)]

1 (WAL AV ap 2 s,y =2 dns(r’,r + o, &(r;(t) - ('
> = dt’f dr’' 2=V pi(r' ,t')n(r’,t")] M i Jn=1
T AVAtJ, r 2
, +on))a, (13
D
~ =% Vz[pi(r,t) f dt’dr’n(r’,t’)] _ _
2AVAtS so that now we do not have to manage with a restricted sum.
4 Moreover, the sum of thé's is the definition ofp, and we
- ZEBVz;(r 12, (100 have that Eq(13) is just
Tc

The first equality arises from the assumption tpats con-
stant in AVAt, and in the last one we have used that
fdt'dr'n(r’,t")=p(r ,t)AVAt/ 7., which follows from the
above-mentioned definition of the _quant'myr ,t)drdt. Note = o2 dnri[A -V, u(r’, 0] -Ainp(r ', t) + O(0d);

also that we have assumed thatis constant but all our =1

results can be extended toradependent on the coordinates (14)

and time.

Next we proceed with the collision term, the fourth one ] o o
on the rhs of Eq.(9). Using the notations(r’,r”,t’)  the equality comes from considering a Taylor expansion in
=([u(r’ ,t")-u(r",t)]-A(r' ,r")AG’,r"), and, again, thag, powers.ofa. T_herefore, the collision te_rm takes th_e fqrm
is approximately constant, the sum ovieand integration (assuming again constancy of the density and velocity fields

(Tf dns(r’,r’ + on,t)p(r’ + on)
=1

over AVAt can be written as in AV)
N Yo ' ' yo?r, _ _ _
; AVAJN " Lv v - Ve p(r,t)zfﬂ dn[(n" V,u(r,t) -nln |.
C nj=1

-[pi(r',wz (.1 (1), 1) —tﬁ)} (15

o Finally, taking the average over the noise as in Réf,
~-3 Y g p(r) qt’ the last term in Eq.(9) disappears, and noting(r,t)

= AVAL " T T ) =(p(r,t)) we obtain the evolution equation for this density

field [8]
xf dr' > s(r’,r;(t),t) 8t —tﬁ)] . (1)
AV

jk

—(9p(r,t) ==V [pu(rt)]+,V ( d_u) + Zggv2( 2)
Then, evaluating the time integral we obtain at PR T P dt 27 P
o, _ _
R AL IR Y ' P () 4 - oy {52 dﬁ{[n-Vu(r,t)]-ﬁ}n].
2 AVALY lpl(r,t) . dr %%s(r ,r,(t”),t”)l. . . ‘
(12) (16)

Here theX, indicates a restriction in the sum to the collid- e we have used the approximatigit) = (p)2, since we

ing timest; in the time interval[t,t+At], and the notation  eypect that the densities in a point of space and time are
;) restricts the sum to the particles whose position is givenjkely to be uncorrelated for different realizations of the
by rj(tikj)=r’+oﬁj, where, as already indicated,is the di- noise.

ameter of the particles ani] is a unitary vector. This calcu- It is very important to clarify the meaning of the noise
lation deserves some clarifications: the restricted sum to thaverage performed to obtain thefield. This has been done
colliding times appears because of thdunction, and the following the arguments of Ref6]. In our case, taken the
sum restricted to the particles with the position as mentionedverage over the noise essentially means smoothing out the
comes from the fact that, right at the collision event, twohigher-order corrections to the velocity of the particles com-
particles are separated by a distan€e wheref is an arbi- ing from complicated collision processes that take place in
trary unit vector. the time intervalAt.
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IV. RELATIVE IMPORTANCE OF THE TERMS IN THE
DENSITY EQUATION, AND REVERSED
CLUSTERING
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Some relevant features of E(L6) come immediately to
light. First, the inelastic charactéthe value ofy) of the
collisions is almost irrelevant at this level of description. The
presence of the external driving flow turns negligible the
difference between elastic and inelastic colliding processes
Also, the collision-induced diffusivity is, as expected, depen-
dent on the density of particles. This is clearly recognized by
rewriing it as (7D/27)VA(p?)=(mD/ )V (pV p)
=V (D(p) Vp), where we have definell(p)=(7;,D/27;)p.

Most of the results of the discrete modé) and(2) that
were presented in Ref3] can be understood in the frame-
work of Eq.(16). Let us put a label on each term on the rhs
of Eq. (_16): the first is the pure a@'VGCt'V,e te.rm, which we FIG. 1. Distributions of the residual terigieft, x component;
label with the lettera, the second is the inertial term (of ~ yight y component of Eq. (8) which is assumed to be a Gaussian
order 7,), which is responsible for preferential concentrationyite noise. The form of the distribution and the self-correlation

in the absence of collisiongl], tt‘]e third is a collision-  (displayed in the insetconfirm this assumption. The flow used in
induced diffusive ternt of order 7D/ 7, and the last is @ this simulation is a sinusoidal shear, i.e.u(r;(t),t)

collision-induced ternd of Ordeerazlrc, which could also  =U cog2my;(t)/L], u,=0, wherer;(t)=[x(t),yi(t)]. For the upper

induce clustering. plot (large 7,) the time step used in the DSMC 4&=0.0001, size
In the absence of collisiongr,— ) the last two terms of the DSMC cells is 0.& 0.6, mean free time is 0.01, mean free

vanish and there is only competition between the adveetion path 5, length of the time period used to calculgtés At=0.005,

and the clusterizing inertial terrh, e.g., whenr,> ~1 it ;pzll r=1, N=L?=1000, ¢=0.3, and U=10000 so thatr,

appears that inertia dommates .and thg system is strongly,,” /| —300. For the bottom plotsmall 7,) At=0.01, DSMC

clusterized. On the other side, in the limit—0 (b van- P L P —_

. o . . cells are 22, mean free time is 0.6, mean free path A870.5,

ishey, it is the d term that can induce clusteringvhen =, ~ i - ~

<1,); however the ternt may eventually become stronger 7»=1:"=1, N=L"=10000,0=0.6, andU=50 so thatr,=0.5.

thand giving rise to a homogeneous distribution of particles.formed this for both cases: large and smayl in order to

The unexpected feature emerging from this analysis is thatheck also the discussion below E§). One can appreciate

the diffusive homogenizing term dominates at high values in Fig. 1 that in the two cases this quantity is a Gaussian

of 7,, thusreversingthe effect of inertia that, in collisionless \yhite noise.

systems, enhances concentration. In the presence of colli- Typical patterns for the distribution of particles obtained

sions, therefore, we haveraversed clusteringhenomenon: with DSMC at large time can be seen in Fig. 2. The flow

for small values ofr, i.e., inertia, the density is more clus- we have used here is the cellular flow derived from

R
3
=
=
=]

10000 20000
L L L S L

n'(t)n'(t+1':)>

Pm)

S

terized than at larger values. the  streamfunction [10]  ¢(x,y,t)=U sin(27/L[x
+Bgycoq wt)])sin(2#7/Ly), with B, and w the amplitude and
V. NUMERICAL SIMULATIONS frequency of the temporal perturbation, respectively. In this

) _ . figure we just show a small part, around 2% of the entire
~We have checked numerically our system in two spatiakysiem, in order to better appreciate the clustering areas. For
dimensions by means of DSMC simulations of the hard diskpe sake of clarity we also show, in red lines, the streamlines
model (similar to those performed in Reff3]) and by a nu- o the flow for B,=0. We have chosen two opposite situa-
merical study(a Lax integration schemeof Eq. (16). The  tjons. In Figs. 2a) and 2b) we have studied a strong inertia
DSMC is a well established algorith{8] that allows one to case(r,> 1) with the panel(b) corresponding to the same

simulate gaseous systems in a rapid and efficient way, WitRgse aga) but without collisions. Note that in the absence of

the assumption of negligible correlations at short range. We,jisionsh>a and preferential concentration can be recog-

have used a variant of DSMC that takes into account theyizeqpanel(b)], while with (elastig collisions we have that
Enskog factor due to high density corrections, in order to;s. s s 5 so that diffusion dominates and the distribution
obtain more accurate simulations of the clusterized situagy particles in(a) is homogeneous. Thus, in this case we

tions. In Appendix we give details about this simulation ohqerve the dispersing effect of the collisions. In Figs) 2
scheme. First of all, we have verified the stochastic approxiz 2d), instead, we have considered a weak inertia case

mation done in Eg(8), using asimple.velocity field given by <1, where Fig. &) is the case with no collisions. Now,
uy(ri(t),)=U cog2my;(t)/L], u,=0, with r;i(t) =[x(1),¥i()].  \ithout collisions we have thaa>b and the flow homog-
We calculate the quantity given by the Ihs of ) minus  enizes the distribution of grairsee Fig. 2d)]. With colli-
the first three terms on the rhs, cumulated for a little timesjons, instead, we haveé>a>b>c and collision induced
period At (greater than the simulation time step, but shorterclustering is observefFig. 2(c)]. Therefore, this case shows
than the mean free timend divided byff)\s“n. We have per- the clustering effect of the collisions.
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FIG. 3. Py(n) function for the distribution of particles obtained
from DSMC (right panel$ and for the density of particles from the
continuum equatioril6) (left) for the same parameter values. Up-
per right are the cases in Figs@R and 2b), that is, with high
inertia, and the lower right corresponds to the Figg) and 2d)
panels(low inertia).

phenomenon ofeversed clusteringhat appears on the basis
of the inspection of terms andd of Eq. (16). Briefly, in the
absence of collisions particles with inertia tend to aggregate,
and the largest is the value of the more compact is the
aggregation of particle$l]. This can be seen comparing
Figs. 2b) and 2d). However, when collisions are taken into
account this last statement can be wrong, and just the con-
trary occurs: inertia is decreasing but aggregation increases
[again this is what happens if we compare Fig&) 2and
_ FIG. 2. (Color onling. Instantaneous density patterns, obtainedz(c)]. Note that in these last two cases we have thatr, so
with DSMC, for the 2 cellulgr.ﬂow,N:SOO 000 and-=VN. Panels  that collisionsdominatethe dynamics. Equatiofil6) per-
(b) and (d) are without collisions. Frames) and (b): U=30,Bo  fectly reflects this situation: the main difference between the
=lo=1(7~0.4), 7,=10,0=0.3,r=1, 7,~0.02[only for ()] Pan-  two cases is originated by the value gfthat influences the
els (c) and(d): U=110,Bo=1, ®=10(74~0.3), 7,=0.003,0=0.5,  re|ative importance of terms andd, as well as the relative
r=1, 7.~0.0002[for (c)]. come from DSMC. Note that a small part jynortance betweea andb in the absence of collisions.
(~2%) of the whole system is potrayed. Solited) lines represent It is important to note that this effect may also appear in
streamlines of the flux witll,=0. The inset in(b) shows these for  go e qation processes, i.e., in systems with particles of dif-
the entire spatial domain. ferent sizes or densities. Obviously, these particles have dif-
) ) ) ferent values ofr, and the same scenario, just commented,
_ The numerical comparison of the DSMC with the con-gmerges. Finally we put in evidence that the inelasticity of
tinuum equation is shown in Fig. 3. Here we measure thejjisions (typical of granular materiajshere just plays the
Pw(n) function, which gives the histogratmormalized to  (qje of slightly enhance spatial correlations, i.e., clustering.
unity) of the number of boxes containing particles after  Tpjs js not taken into account by E¢L6) but can be ob-
dividing the system itM boxes. Note that as the clustering is ggryed in the DSMC simulations.
stronger the deviations d?(n) from a Poissoniarthomo-
geneous distributionare more evident. On the right we plot
the function for the DSMC patterns of Figs(a? and 2b)
(upper right pangland Figs. 2c) and 2d) (lower right. On The evolution of the density field of a large number of
the left, we showPy,(n) for the distribution calculated with colliding finite-size particles driven by an external flow has
the continuum equation and the same value of the paranbeen derived. It is important to note that no premise has been
eters. Note that now a homogeneous distribution of particleperformed on the flow so our results are equally valid for
corresponds to a constant density and that is the reason whgminar, chaotic, or turbulent flows. However, in the numer-
in this casePy,(n) resembles a Diraé distribution centered ics we have used a chaotic flow just for its interest and sim-
around this constant value. plicity, and also to compare with the results of our previous
The results shown in Figs. 2 and 3 clearly indicate thework [3]. In this equation one can recognize two, in prin-
relevant role of the collisions for inertial particles immersedciple, competing roles of the collisions: clustering and dis-
in a flow, verifying as well the important and unexpectedpersion. The relative strengths of the important time scales
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involved in the system will finally determine if the particles in the same cell may collideandomly For each cellc a
tend to cluster or, on the contrary, are uniformly distributednumberm; of couples of particles is chosen with probability
in the space. Collisions may even invert the typical scenari@roportional to their scattering section, i.e., in this case pro-
found for inertial particles, showing the reversed clusteringportional to their relative velocities. The numbeg is calcu-
phenomenon. We have also presented a numerical study tfted asm.=w:At, where w. is the average collision fre-
the continuum equation and compared with DSMC simula-quency estimated in the ced, by assuming a Gaussian
tions of the system of discrete particles. The good agreemeidistribution of velocities with variance given by the actual

gives support to our theory. variance of velocities of the particles inside the cell. As is
known, the Boltzmann equation is a correct description of a
ACKNOWLEDGMENTS gas of hard particles only in the dilute limN— o, ¢—0

) . ) . with finite No9* (d the space dimensipnWhen the gas
We  acknowledge fruitful discussions with Umberto cannot be considered dilute, correlations arise in the form of
Marini Bettolo Marconi. C.L. acknowledges support from an enhancement of the collision frequency and in compli-
MCyT of Spain under Project No. REN2001-0802-C02-01/¢ated excluded volume effects. It is accepted that at not too
MAR (IMAGEN). high packing fraction, the so-called Enskog correction to the
Boltzmann equation gives a sufficient description of these
APPENDIX: THE DSMC effects. In the Boltzmann equation this correction appears as
Direct simulation Monte Carlo, also known as Bird a simple multiplicative term in front of the collision integral,
Method[9], is a simulation scheme used to solve Boltzmannwhich is equivalent to an increase of the collision frequency.
equations. With some conditions and in well defined limitsThe Enskog correction is usually taken to be the static cor-
its results are proved to converge to the solution of the Boltrelation functiong(r) evaluated at contact, i.et=0, for
zmann equation for a gas of hard sphqte. The algorithm  which approximated formgdependent upon the local vol-
consists of two main stepga) the free flow and(b) the  ume fractionp=N.m(co/2)?/V,, with V. the area of a cell
collisions. At every time step of lengtht (lesser than any andN, the number of particles in the cplre available. We
characteristic physical time, e.g., the collision tingl the  (in d=2) have used the following forrfil2]:
particles are movedreely, i.e., disregarding possible colli-
sions and then the collision procedure is applied: the system
is divided into cells of linear size lesser than any character- g(o) = 1-7¢4116 (A1)
istic physical length(e.g., the mean free patland particles (1-¢)? "
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