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The equation of the density field of an assembly of macroscopic particles advected by a hydro-dynamic flow
is derived from the microscopic description of the system. This equation allows one to recognize the role and
the relative importance of the different microscopic processes implicit in the model: the driving of the external
flow, the inertia of the particles, and the collisions among them. The validity of the density description is
confirmed by comparisons of numerical studies of the continuum equation with direct simulation Monte Carlo
simulations of hard disks advected by a chaotic flow. We show that the collisions have two competing roles: a
dispersinglike effect and a clustering effect(even for elastic collisions). An unexpected feature is also observed
in the system: the presence of collisions can reverse the effect of inertia, so that grains with lower inertia are
more clusterized.
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I. INTRODUCTION

The transport of inertial particles in hydrodynamic flows
has recently attracted the attention of many researchers[1].
The great number of applications of this topic, including,
e.g., ecological problems(dynamics of plankton popula-
tions), geophysical processes(cloud formation, transport of
pollutants in the atmosphere, or the oceans), or chemical en-
gineering(chemical reactions in turbulent or chaotic flows),
constitutes the main reason for this interest.

In most of these works, despite considering finite-size par-
ticles, the effect of the colliding processes among particles
was completely disregarded. However, in some applications,
as exemplified by rain initiation in clouds[2], the role of
collisions seems to be crucial. Thus, in order to take them
into account, in a recent paper[3] we have introduced a
simple model of a granular material,N particles subject to
mutual collisions(elastic or inelastic), advected by a two-
dimensional chaotic flow(gravity is not considered). The
model equivalently describes inertial particles colliding
among them and immersed in a chaotic flow, with the density
of the particles higher than that of the fluid. A novel result
found in Ref.[3] is that collisions may strongly modify the
scenario of the so-calledpreferential concentration[1] by
which particles in turbulent flows, in the absence of colli-
sions, tend to aggregate in specific spatial areas.

In this paper we derive from first principles the equation
for the macroscopic density of grains(we indistinctly speak
of grains or colliding particles) for the model of Ref.[3] (but
with a flow not necessarily chaotic). Its properties are dis-
cussed and, in particular, we show how it can explain two
different effects of collisions: dispersion and clustering. In
addition, the macroscopic equation helps us to understand
another surprising feature of the model, observed in the di-
rect simulation Monte Carlo(DSMC) simulations, which we
call reversed clustering:in the presence of collisions lower
values of inertia can induce more aggregation of the par-
ticles.

The paper is organized as follows. In the following sec-
tion we present our model and derive an explicit expression
for the velocity of the grains. In Sec. III we obtain the evo-
lution equation for the density field of particles. Next, in Sec.
IV we present some of the most relevant features of this
density equation; in particular, we discuss the relative impor-
tance of its different terms. In Sec. V we numerically check
our theoretical results and, finally, in Sec. VI we summarize
the paper.

II. EQUATIONS OF MOTION AND STOCHASTIC
TREATMENT OF COLLISIONS

The equations of motion ofN granular particles driven by
an external velocity fieldusr ,td are given by

dvistd
dt

= −
1

tp
fvi„td − usr ist…,tdg + go

j=1

N

o
k

hfvistd

− v jstdg · n̂i jstdjn̂i jstddst − tij
k d, s1d

dr istd
dt

= vistd, s2d

wherei =1, . . . ,N, vi is the velocity of particlei, r i its posi-
tion, tp is the Stokes time,g=s1+rd /2, r P f0,1g is the res-
titution coefficient sr ø1, with r =1 for elastic collisionsd,
n̂i jstd is the unitary vector joining the centers of particlesi
and j at timet sin the following we will also use the notation
n̂sr ,r 8d to denote a unitary vector joining vectorsr and r 8d,
d is the Dirac delta, and withtij

k we denote the times at which
particlesi and j make theirkth collision. The first term in Eq.
s1d indicates the inertia of the particles and the second one
shows how the velocity of a particle is modified because of
the collisions with the rest. Without collisions Eqs.s1d and
s2d are the equations of motion ofN spherical particles where
the Bernoulli term, the added-mass term, the Basset-
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Boussinesq history integral term, and the Faxen corrections
are neglected. Thus, the advection of the particles is model-
ized taking only the Stokes drag as the relevant term in the
Maxey and Riley equationsf4g. This is a consistent approxi-
mation when the particles of the granular system are much
heavier than those of the fluidf5g, which is the case that we
are considering. It is also fundamental to mention that the
relevant time scales of the problem were identified in Ref.
f3g to be the typical time of the flowT, the Stokes timetp,
the mean collision timetc, and, in the case of a chaotic flow,
the timet f, given by the inverse of the Lyapunov exponent
of the flow.

In order to obtain a close expression forvistd we first
nondimensionalize time and velocities taking as unit scales
the typical timeT and typical lengthL of the flow, i.e., t
→ t /T, u→uT/L, andv→vT/L. Thenvistd will be obtained
as a formal expansion in the nondimensional parametertp

=tp̂/T. From Eq.(1) one has straightforwardly

vistd = u„r istd,t… − tpdvi/dt,− gtpo
i

o
k

fsvi

− v jd · n̂i jstdgn̂i jstddst − tij
k d, s3d

then this expression ofvi is itself substituted on the right-
hand sidesrhsd of Eq. s3d and one obtains to ordertp

2,

vistd = u„r istd,t… − tp
du

dt
− gtpo

i
o
k

hfusr id

− usr jdg · n̂i jstdjn̂i jstddst − tij
k d + tp

2ĥistd + Qstp
3d.

s4d

If one writes down explicitlyĥistd,

ĥistd =
d2u„r istd,t…

dt2
+ go

j
o
k
S d

dt
hfusr id − usr jdgdst − tij

k dj

+ dst − tij
k d

d

dt
fusr id − usr jdgD + g2o

j
o
k

dst − tij
k d

3So
l

o
m

svi − vlddst − til
md − o

n
o
p

sv j − vnddst − tjn
p dD ,

s5d

one can see that it is a very complicated expression taking
into account collisions among different particles. Neglecting
the first term in Eq.s5d one can assume that it is some kind
of effective stochastic term acting at the colliding timessthis
hypothesis will be checked in Sec. Vd, i.e., it denotes a ran-
dom kick on a particle every time it collides:

ĥistd = o
j=1

N

o
k

dst − tij
k dz jstd, s6d

where z jstd is a Gaussian white noise with zero mean and
kz j

l stdzk
mst8dl=2D9dst− t8dd jkdlm sthe superindex denotes vec-

tor componentd.
It is now easy to obtain thatkĥistdl=0, and the correla-

tions

kĥi
kstdĥ j

l st8dl = 2D9dkldst − t8ddi jo
j

o
m

dst − tij
md

= 2Ddi jdkldst − t8dn„r istd,t…, s7d

wheren(r istd ,t) is such thatnsr ,tddrdt is the average num-
ber of collisions that a particle positioned inr undergoes at
time t. D8 and D9 are constants absorbed at the end in the
definition of D, which is another constant of orders4/T4 ss
is the diameter of the particlesd. This last statement comes
from comparing the full expression at ordertp

2 in Eq. s5d
with Eq. s7d.

Finally, denotingĥistd=ÎDn(r istd ,t)histd we arrive to

vistd = usr istd,td − tp
du

dt
− gtpo

i
o
k

hfusr id

− usr jdg · n̂i jstdjn̂i jstddst − tij
k d + tp

2ÎDn„r istd,t…histd

+ Qstp
3d, s8d

whereh is a Gaussian white noise with zero mean and cor-
relationskhi

kstdh j
l st8dl=2dkldi jdst− t8d.

At this point we make the hypothesis that Eq.(8) is valid
for any tp; in some sense, the higher-order termsQstp

3d just
renormalize the diffusion coefficient. This is supported by
the fact that for largetp the noise term in Eq.(8) dominates,

which is consistent with the fact that in Eq.(1) for tp̂ large
the dynamics of the particles is mainly driven by collisions.
Thus, this hypothesis finally states that the net effect of the
colliding processes is properly modelized by the noise term
appearing in Eq.(8). This will also be checked in Sec. V.

III. EVOLUTION EQUATION OF THE DENSITY
FIELD

Our aim is to obtain the evolution equation of the density
field of particles. For this we closely follow[7,6] and define
r̄sr ,td=oi=1

N risr ,td;oi d(r istd−r) . Using Ito calculus[7]

] risr ,td
] t

= − = · friusr ,tdg + tp = ·Sri
du

dt
D

+ tp
4D

2
¹2fnsr ,tdriggtp = ·Frio

j=1

N

o
k

hfusr ,td

− u„r jstd,t…g · n̂sr ,r jdjn̂sr ,r jddst − tij
k dG

− tp
2ÎD = · fri

Însr ,tdhistdg. s9d

We assume now that the local free time between colli-
sions,tcsr ,td, is everywhere smaller than any other charac-
teristic time of the system, and that the mean free path
lcsr ,td is also smaller than any other characteristic spatial
scale. With these hypotheses we will proceed by integrating
every term in Eq.(9) over small space-time cellsDVDt (with
this integral normalized by this spatiotemporal volume) such
thattcsr ,td,Dt,minhtp,1 ,t fj, andlc

2sr ,td,DV,l2, with
l the minimum typical space scale of the system. Assuming
that the fieldsr̄ andu are constant over the above space-time
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cells, the integration overDVDt (normalized with this vol-
ume) and the summation over indexi of the left-hand side
(lhs) in Eq. (9), and of the first two terms on the rhs can be
easily calculated.

More complicated are the other terms. Let us study them
in detail beginning with the diffusion term[the third on the
rhs of Eq.(9)]

o
i

1

DVDt
E

t

t+Dt

dt8E
r

r+DV

dr 8
tp

4D

2
=2frisr 8,t8dnsr 8,t8dg

<
tp

4D

2DVDt
o

i

=2Frisr ,td E dt8dr 8nsr 8,t8dG
=

tp
4D

2tc
=2r̄sr ,td2. s10d

The first equality arises from the assumption thatri is con-
stant in DVDt, and in the last one we have used that
edt8dr 8nsr 8 ,t8d< r̄sr ,tdDVDt /tc, which follows from the
above-mentioned definition of the quantitynsr ,tddrdt. Note
also that we have assumed thattc is constant but all our
results can be extended to atc dependent on the coordinates
and time.

Next we proceed with the collision term, the fourth one
on the rhs of Eq. (9). Using the notationssr 8 ,r 9 ,t8d
; (fusr 8 ,t8d−usr 9 ,t8dg ·n̂sr 8 ,r 9d)n̂sr 8 ,r 9d, and, again, thatri

is approximately constant, the sum overi and integration
over DVDt can be written as

− o
i

gtp

DVDt
E

Dt
dt8E

DV
dr 8=r8

·Frisr 8,t8do
j ,k

s„r 8,r jst8d,t8…dst8 − tij
k dG

< − o
i

gtp

DVDt
=r ·Frisr ,tdE

Dt
dt8

3E
DV

dr 8o
j ,k

s„r 8,r jst8d,t8…dst8 − tij
k dG . s11d

Then, evaluating the time integral we obtain

− o
i

gtp

DVDt
=r ·Frisr ,tdE

DV
dr 8o

k jl
o
kkl

s„r 8,r jstij
k d,tij

k
…G .

s12d

Here theokkl indicates a restriction in the sum to the collid-
ing times tij

k in the time intervalft ,t+Dtg, and the notation
ok jl restricts the sum to the particles whose position is given
by r jstij

k d=r 8+sn̂ j, where, as already indicated,s is the di-
ameter of the particles andn̂ j is a unitary vector. This calcu-
lation deserves some clarifications: the restricted sum to the
colliding times appears because of thed function, and the
sum restricted to the particles with the position as mentioned
comes from the fact that, right at the collision event, two
particles are separated by a distancesn̂, wheren̂ is an arbi-
trary unit vector.

Then we approximate okkl s(r8 ,r jstij
k d ,tij

k )
<sDt /tcds(r8 ,r jstd ,t) becauseDt /tc is approximately the
number of colliding events in the time intervalDt, and the
sum overk jl, with the help of the properties of the Diracd
function, can be written as

o
k jl

s„r 8,r jstd,t… = o
j
E

un̄u=1
dn̄ssr 8,r 8 + sn̄,tdd„r jstd − sr 8

+ sn̄d…s, s13d

so that now we do not have to manage with a restricted sum.
Moreover, the sum of thed’s is the definition ofr̄, and we
have that Eq.s13d is just

sE
un̄u=1

dn̄ssr 8,r 8 + sn̄,tdr̄sr 8 + sn̄d

= s2E
un̄u=1

dn̄hfn̄ · =r8usr 8,tdg · n̄jn̄r̄sr 8,td + Qss3d;

s14d

the equality comes from considering a Taylor expansion in
powers ofs. Therefore, the collision term takes the form
sassuming again constancy of the density and velocity fields
in DVd

−
gs2tp

tc
=r ·Fr̄sr ,td2E

un̄u=1
dn̄fsn̄ · =rusr ,td · n̄gn̄G .

s15d

Finally, taking the average over the noise as in Ref.[6],
the last term in Eq.(9) disappears, and notingrsr ,td
;kr̄sr ,tdl we obtain the evolution equation for this density
field [8]

] rsr ,td
] t

= − = · frusr ,tdg + tp = ·Sr
du

dt
D +

tp
4D

2tc
=2sr2d

−
gs2tp

tc
=r ·Fr̄2E

un̄u=1
dn̄hfn̄ · =rusr ,tdg · n̄jn̄G .

s16d

Here we have used the approximationkr̄2l<kr̄l2, since we
expect that the densities in a point of space and time are
likely to be uncorrelated for different realizations of the
noise.

It is very important to clarify the meaning of the noise
average performed to obtain ther field. This has been done
following the arguments of Ref.[6]. In our case, taken the
average over the noise essentially means smoothing out the
higher-order corrections to the velocity of the particles com-
ing from complicated collision processes that take place in
the time intervalDt.
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IV. RELATIVE IMPORTANCE OF THE TERMS IN THE
DENSITY EQUATION, AND REVERSED

CLUSTERING

Some relevant features of Eq.(16) come immediately to
light. First, the inelastic character(the value ofg) of the
collisions is almost irrelevant at this level of description. The
presence of the external driving flow turns negligible the
difference between elastic and inelastic colliding processes.
Also, the collision-induced diffusivity is, as expected, depen-
dent on the density of particles. This is clearly recognized by
rewriting it as stp

4D /2tcd¹2sr2d=stp
4D /tcd= sr=rd

; = (D̂srd=r), where we have definedD̂srd=stp
4D /2tcdr.

Most of the results of the discrete model(1) and (2) that
were presented in Ref.[3] can be understood in the frame-
work of Eq. (16). Let us put a label on each term on the rhs
of Eq. (16): the first is the pure advective term, which we
label with the lettera, the second is the inertial termb (of
ordertp), which is responsible for preferential concentration
in the absence of collisions[1], the third is a collision-
induced diffusive termc of order tp

4D /tc, and the last is a
collision-induced termd of ordertps2/tc, which could also
induce clustering.

In the absence of collisionsstc→`d the last two terms
vanish and there is only competition between the advectiona
and the clusterizing inertial termb, e.g., whentp. ,1 it
appears that inertia dominates and the system is strongly
clusterized. On the other side, in the limittp→0 (b van-
ishes), it is the d term that can induce clustering(when tc
!tp); however the termc may eventually become stronger
thand giving rise to a homogeneous distribution of particles.
The unexpected feature emerging from this analysis is that
the diffusive homogenizing termc dominates at high values
of tp, thusreversingthe effect of inertia that, in collisionless
systems, enhances concentration. In the presence of colli-
sions, therefore, we have areversed clusteringphenomenon:
for small values oftp, i.e., inertia, the density is more clus-
terized than at larger values.

V. NUMERICAL SIMULATIONS

We have checked numerically our system in two spatial
dimensions by means of DSMC simulations of the hard disk
model (similar to those performed in Ref.[3]) and by a nu-
merical study(a Lax integration scheme) of Eq. (16). The
DSMC is a well established algorithm[9] that allows one to
simulate gaseous systems in a rapid and efficient way, with
the assumption of negligible correlations at short range. We
have used a variant of DSMC that takes into account the
Enskog factor due to high density corrections, in order to
obtain more accurate simulations of the clusterized situa-
tions. In Appendix we give details about this simulation
scheme. First of all, we have verified the stochastic approxi-
mation done in Eq.(8), using a simple velocity field given by
ux(r istd ,t)=U cosf2pyistd /Lg, uy=0, with r istd=fxistd ,yistdg.
We calculate the quantity given by the lhs of Eq.(8) minus
the first three terms on the rhs, cumulated for a little time

periodDt̄ (greater than the simulation time step, but shorter
than the mean free time) and divided bytp

2În. We have per-

formed this for both cases: large and smalltp, in order to
check also the discussion below Eq.(8). One can appreciate
in Fig. 1 that in the two cases this quantity is a Gaussian
white noise.

Typical patterns for the distribution of particles obtained
with DSMC at large time can be seen in Fig. 2. The flow
we have used here is the cellular flow derived from
the streamfunction [10] csx,y,td=U sin(2p /Lfx
+B0cossvtdg)sins2p /Lyd, with B0 and v the amplitude and
frequency of the temporal perturbation, respectively. In this
figure we just show a small part, around 2% of the entire
system, in order to better appreciate the clustering areas. For
the sake of clarity we also show, in red lines, the streamlines
of the flow for B0=0. We have chosen two opposite situa-
tions. In Figs. 2(a) and 2(b) we have studied a strong inertia
casestp.1d with the panel(b) corresponding to the same
case as(a) but without collisions. Note that in the absence of
collisionsb.a and preferential concentration can be recog-
nized[panel(b)], while with (elastic) collisions we have that
c@d@b@a so that diffusion dominates and the distribution
of particles in (a) is homogeneous. Thus, in this case we
observe the dispersing effect of the collisions. In Figs. 2(c)
and 2(d), instead, we have considered a weak inertia case,
tp,1, where Fig. 2(d) is the case with no collisions. Now,
without collisions we have thata.b and the flow homog-
enizes the distribution of grains[see Fig. 2(d)]. With colli-
sions, instead, we haved.a.b.c and collision induced
clustering is observed[Fig. 2(c)]. Therefore, this case shows
the clustering effect of the collisions.

FIG. 1. Distributions of the residual term(left, x component;
right, y component) of Eq. (8) which is assumed to be a Gaussian
white noise. The form of the distribution and the self-correlation
(displayed in the insets) confirm this assumption. The flow used in
this simulation is a sinusoidal shear, i.e.,ux(r istd ,t)
=U cosf2pyistd /Lg, uy=0, wherer istd=fxistd ,yistdg. For the upper
plot (largetp) the time step used in the DSMC isDt=0.0001, size
of the DSMC cells is 0.630.6, mean free time is 0.01, mean free

path 5, length of the time period used to calculateh is Dt̄=0.005,

tp̂=1, r =1, N=L2=1000, s=0.3, and U=10 000 so thattp

=Utp̂/L,300. For the bottom plot(small tp) Dt=0.01, DSMC

cells are 232, mean free time is 0.6, mean free path 18,Dt̄=0.5,

tp̂=1, r =1, N=L2=10 000,s=0.6, andU=50 so thattp=0.5.
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The numerical comparison of the DSMC with the con-
tinuum equation is shown in Fig. 3. Here we measure the
PMsnd function, which gives the histogram(normalized to
unity) of the number of boxes containingn particles after
dividing the system inM boxes. Note that as the clustering is
stronger the deviations ofPMsnd from a Poissonian(homo-
geneous distribution) are more evident. On the right we plot
the function for the DSMC patterns of Figs. 2(a) and 2(b)
(upper right panel) and Figs. 2(c) and 2(d) (lower right). On
the left, we showPMsnd for the distribution calculated with
the continuum equation and the same value of the param-
eters. Note that now a homogeneous distribution of particles
corresponds to a constant density and that is the reason why
in this casePMsnd resembles a Diracd distribution centered
around this constant value.

The results shown in Figs. 2 and 3 clearly indicate the
relevant role of the collisions for inertial particles immersed
in a flow, verifying as well the important and unexpected

phenomenon ofreversed clusteringthat appears on the basis
of the inspection of termsc andd of Eq. (16). Briefly, in the
absence of collisions particles with inertia tend to aggregate,
and the largest is the value oftp the more compact is the
aggregation of particles[1]. This can be seen comparing
Figs. 2(b) and 2(d). However, when collisions are taken into
account this last statement can be wrong, and just the con-
trary occurs: inertia is decreasing but aggregation increases
[again this is what happens if we compare Figs. 2(a) and
2(c)]. Note that in these last two cases we have thattc,tp so
that collisionsdominate the dynamics. Equation(16) per-
fectly reflects this situation: the main difference between the
two cases is originated by the value oftp that influences the
relative importance of termsc andd, as well as the relative
importance betweena andb in the absence of collisions.

It is important to note that this effect may also appear in
segregation processes, i.e., in systems with particles of dif-
ferent sizes or densities. Obviously, these particles have dif-
ferent values oftp and the same scenario, just commented,
emerges. Finally we put in evidence that the inelasticity of
collisions (typical of granular materials) here just plays the
role of slightly enhance spatial correlations, i.e., clustering.
This is not taken into account by Eq.(16) but can be ob-
served in the DSMC simulations.

VI. SUMMARY

The evolution of the density field of a large number of
colliding finite-size particles driven by an external flow has
been derived. It is important to note that no premise has been
performed on the flow so our results are equally valid for
laminar, chaotic, or turbulent flows. However, in the numer-
ics we have used a chaotic flow just for its interest and sim-
plicity, and also to compare with the results of our previous
work [3]. In this equation one can recognize two, in prin-
ciple, competing roles of the collisions: clustering and dis-
persion. The relative strengths of the important time scales

FIG. 2. (Color online). Instantaneous density patterns, obtained
with DSMC, for the 2d cellular flow,N=500 000 andL=ÎN. Panels
(b) and (d) are without collisions. Frames(a) and (b): U=30, B0

=1v=1st f ,0.4d, tp̂=10,s=0.3,r =1, tc,0.02[only for (a)]. Pan-
els (c) and (d): U=110, B0=1, v=10st f ,0.3d, tp=0.003,s=0.5,
r =1, tc,0.0002[for (c)]. come from DSMC. Note that a small part
s,2%d of the whole system is potrayed. Solid(red) lines represent
streamlines of the flux withB0=0. The inset in(b) shows these for
the entire spatial domain.

FIG. 3. PMsnd function for the distribution of particles obtained
from DSMC (right panels) and for the density of particles from the
continuum equation(16) (left) for the same parameter values. Up-
per right are the cases in Figs. 2(a) and 2(b), that is, with high
inertia, and the lower right corresponds to the Figs. 2(c) and 2(d)
panels(low inertia).
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involved in the system will finally determine if the particles
tend to cluster or, on the contrary, are uniformly distributed
in the space. Collisions may even invert the typical scenario
found for inertial particles, showing the reversed clustering
phenomenon. We have also presented a numerical study of
the continuum equation and compared with DSMC simula-
tions of the system of discrete particles. The good agreement
gives support to our theory.
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APPENDIX: THE DSMC
Direct simulation Monte Carlo, also known as Bird

Method[9], is a simulation scheme used to solve Boltzmann
equations. With some conditions and in well defined limits
its results are proved to converge to the solution of the Bolt-
zmann equation for a gas of hard spheres[11]. The algorithm
consists of two main steps:(a) the free flow and(b) the
collisions. At every time step of lengthDt (lesser than any
characteristic physical time, e.g., the collision time) all the
particles are movedfreely, i.e., disregarding possible colli-
sions and then the collision procedure is applied: the system
is divided into cells of linear size lesser than any character-
istic physical length(e.g., the mean free path) and particles

in the same cell may colliderandomly. For each cellc a
numbermc of couples of particles is chosen with probability
proportional to their scattering section, i.e., in this case pro-
portional to their relative velocities. The numbermc is calcu-
lated asmc=vcDt, where vc is the average collision fre-
quency estimated in the cellc, by assuming a Gaussian
distribution of velocities with variance given by the actual
variance of velocities of the particles inside the cell. As is
known, the Boltzmann equation is a correct description of a
gas of hard particles only in the dilute limitN→`, s→0
with finite Nsd−1 (d the space dimension). When the gas
cannot be considered dilute, correlations arise in the form of
an enhancement of the collision frequency and in compli-
cated excluded volume effects. It is accepted that at not too
high packing fraction, the so-called Enskog correction to the
Boltzmann equation gives a sufficient description of these
effects. In the Boltzmann equation this correction appears as
a simple multiplicative term in front of the collision integral,
which is equivalent to an increase of the collision frequency.
The Enskog correction is usually taken to be the static cor-
relation functiongsrd evaluated at contact, i.e.,r =s, for
which approximated forms[dependent upon the local vol-
ume fractionf=Ncpss /2d2/Vc, with Vc the area of a cell
andNc the number of particles in the cell] are available. We
(in d=2) have used the following form[12]:

gssd =
1 − 7f/16

s1 − fd2 . sA1d
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