63 research outputs found
The Curious Adventure of the Ultrahigh Energy Cosmic Rays
These lectures discuss the mysteries involving the production and
extragalactic propagation of ultrahigh energy cosmic rays and suggested
possible solutions.Comment: Lectures given at the D. Chalonge Euroschool, Erice, Italy, November
2000, 25 pages, 7 ps figs., expanded revision with color fig.
Results of the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC)
Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory (Rubin) will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we developed the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC), a competition that aimed to catalyze the development of robust classifiers under LSST-like conditions of a nonrepresentative training set for a large photometric test set of imbalanced classes. Over 1000 teams participated in PLAsTiCC, which was hosted in the Kaggle data science competition platform between 2018 September 28 and 2018 December 17, ultimately identifying three winners in 2019 February. Participants produced classifiers employing a diverse set of machine-learning techniques including hybrid combinations and ensemble averages of a range of approaches, among them boosted decision trees, neural networks, and multilayer perceptrons. The strong performance of the top three classifiers on Type Ia supernovae and kilonovae represent a major improvement over the current state of the art within astronomy. This paper summarizes the most promising methods and evaluates their results in detail, highlighting future directions both for classifier development and simulation needs for a next-generation PLAsTiCC data set
Long Time to Diagnosis of Medulloblastoma in Children Is Not Associated with Decreased Survival or with Worse Neurological Outcome
International audienceBACKGROUND: The long time to diagnosis of medulloblastoma, one of the most frequent brain tumors in children, is the source of painful remorse and sometimes lawsuits. We analyzed its consequences for tumor stage, survival, and sequelae. PATIENTS AND METHODS: This retrospective population-based cohort study included all cases of pediatric medulloblastoma from a region of France between 1990 and 2005. We collected the demographic, clinical, and tumor data and analyzed the relations between the interval from symptom onset until diagnosis, initial disease stage, survival, and neuropsychological and neurological outcome. RESULTS: The median interval from symptom onset until diagnosis for the 166 cases was 65 days (interquartile range 31-121, range 3-457). A long interval (defined as longer than the median) was associated with a lower frequency of metastasis in the univariate and multivariate analyses and with a larger tumor volume, desmoplastic histology, and longer survival in the univariate analysis, but not after adjustment for confounding factors. The time to diagnosis was significantly associated with IQ score among survivors. No significant relation was found between the time to diagnosis and neurological disability. In the 62 patients with metastases, a long prediagnosis interval was associated with a higher T stage, infiltration of the fourth ventricle floor, and incomplete surgical resection; it nonetheless did not influence survival significantly in this subgroup. CONCLUSIONS: We found complex and often inverse relations between time to diagnosis of medulloblastoma in children and initial severity factors, survival, and neuropsychological and neurological outcome. This interval appears due more to the nature of the tumor and its progression than to parental or medical factors. These conclusions should be taken into account in the information provided to parents and in expert assessments produced for malpractice claims
Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust
This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 Ă 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH â 1 Ă 1021 cm-2 and in particular a sharp drop above NH â 1.5 Ă 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight.
Reproduced with permission, © ESO, 201
Planck 2018 results. VII. Isotropy and statistics of the CMB
Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the CDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, and , or the -mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., ). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the CDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales
Planck 2018 results. VII. Isotropy and Statistics of the CMB
Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the CDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, and , or the -mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., ). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the CDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales
Planck 2015 results: XV. gravitational lensing
We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40<L<400 and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the best-fitting LCDM model based on the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination Ï 8 Ω 0.25 m =0.591±0.021 . We combine our determination of the lensing potential with the E-mode polarization also measured by Planck to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected due to dark energy in the concordance LCDM model
Evolution of Interstellar Ices
Abstract. Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and proba-bly H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, inter-stellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ pho-tochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs read-ily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ke-tones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species simila
- âŠ