79 research outputs found

    Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides

    Full text link
    We report on the realization and optical characterization of a CMOS-compatible silicon-based microresonator/waveguide coupled system, fully integrated on a silicon chip. The device uses a vertical coupling scheme between the resonator and a buried strip waveguide. We demonstrate that its high optical quality follows from the accurate planarization of the waveguide topography. More importantly, we demonstrate a wafer-scale mass fabrication of freestanding planar resonators suspended in air and coupled to the integrated bus waveguides. A nanometer control of the coupling distances allows for a precise and selective excitation of different mode families of the resonator. This opens the door for the realization of stable all-integrated complex resonator systems for optomechanical and metrological applications, with the potential to substitute the nowadays intensive use of complicated fiber-taper coupling schemes.Comment: 3 pages, 3 figure

    Silicon Quantum Dots for Photovoltaics: A Review

    Get PDF
    Physical chemistr

    Role of edge inclination in optical microdisk resonator for label-free sensing

    Get PDF
    In this paper we report on the measurement and modelling of enhanced optical refractometric sensors based on whispering-gallery-modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. The optimization analysis is a delicate balance of resonance quality factor and evanescent field overlap with the sorrounding environment to analyze. By numerical simulations we show that the microdisk thickness is critical to yield high figure of merit for the sensor, while edge inclination is less important. We also show that figures of merit as high as 1600/RIU are feasible.Comment: 10 page

    Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier

    Get PDF
    A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST) suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon

    Silicon Photonics Chip for Inter-modal Four Wave Mixing on a Broad Wavelength Range

    Get PDF
    We design, fabricate and test an integrated silicon photonics chip for inter-modal four wave mixing, whose phase-matching relays on the modal dispersions of different waveguide modes. This phase-matching technique allows for tunable and broadband wavelength conversion and generation. We demonstrate that idler and signal photons can be generated with 800 nm spectral distance in between. We measure several inter-modal combinations, with up to the third order mode involvement. We demonstrate a maximum conversion efficiency of -12.4 dB from 1468.5 nm to 1641.1 nm with a bandwidth of 11 nm. We also prove the high and broadband tunability of the generated signal by scanning the pump wavelength when the signal wavelength is fixed. All these features make the inter-modal four wave mixing a viable solution for all optical processing in the near as well as in the mid infrared and for quantum applications

    A fully integrated high-Q Whispering-Gallery Wedge Resonator

    Full text link
    Microresonator devices which posses ultra-high quality factors are essential for fundamental investigations and applications. Microsphere and microtoroid resonators support remarkably high Q's at optical frequencies, while planarity constrains preclude their integration into functional lightwave circuits. Conventional semiconductor processing can also be used to realize ultra-high-Q's with planar wedge-resonators. Still, their full integration with side-coupled dielectric waveguides remains an issue. Here we show the full monolithic integration of a wedge-resonator/waveguide vertically-coupled system on a silicon chip. In this approach the cavity and the waveguide lay in different planes. This permits to realize the shallow-angle wedge while the waveguide remains intact, allowing therefore to engineer a coupling of arbitrary strength between these two. The precise size-control and the robustness against post-processing operation due to its monolithic integration makes this system a prominent platform for industrial-scale integration of ultra-high-Q devices into planar lightwave chips.Comment: 6 pages, 4 figure

    Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator

    Full text link
    We report on visible light emission from Si-nanocrystal based optically active microdisk resonators. The room temperature photoluminescence (PL) from single microdisks shows the characteristic modal structure of whispering-gallery modes. The emission is both TE and TM-polarized in 300 nm thick microdisks, while thinner ones (135 nm) support only TE-like modes. Thinner disks have the advantage to filter out higher order radial mode families, allowing for measuring only the most intense first order modal structure. We reveal subnanometer linewidths and corresponding quality factors as high as 2800, limited by the spectral resolution of the experimental setup. Moreover,we observe a modification of mode linewidth by a factor 13 as a function of pump power. The origin of this effect is attributed to an excited carrier absorption loss mechanism.Comment: 5 pages, 5 figure

    Inter-mode reactive coupling induced by waveguide-resonator interaction

    Get PDF
    We report on a joint theoretical and experimental study of an integrated photonic device consisting of a single mode waveguide vertically coupled to a disk-shaped microresonator. Starting from the general theory of open systems, we show how the presence of a neighboring waveguide induces reactive inter-mode coupling in the resonator, analogous to an off-diagonal Lamb shift from atomic physics. Observable consequences of this coupling manifest as peculiar Fano lineshapes in the waveguide transmission spectra. The theoretical predictions are validated by full vectorial 3D finite element numerical simulations and are confirmed by the experiments

    Chapter Silicon Quantum Dots for Photovoltaics: A Review

    Get PDF
    Physical chemistr
    • …
    corecore