19 research outputs found
Effect of a resistance exercise at acute moderate altitude on muscle health biomarkers
The intensification of the stress response during resistance training (RT) under hypoxia conditions could trigger unwanted effects that compromise muscle health and, therefore, the ability of the muscle to adapt to longer training periods. We examined the effect of acute moderate terrestrial hypoxia on metabolic, inflammation, antioxidant capacity and muscle atrophy biomarkers after a single RT session in a young male population. Twenty healthy volunteers allocated to the normoxia (N < 700 m asl) or moderate altitude (HH = 2320 m asl) group participated in this study. Before and throughout the 30 min following the RT session (3 × 10 reps, 90 s rest, 70% 1RM), venous blood samples were taken and analysed for circulating calcium, inorganic phosphate, cytokines (IL-6, IL-10 and TNF-α), total antioxidant capacity (TAC) and myostatin. Main results displayed a marked metabolic stress response after the RT in both conditions. A large to very large proportional increase in the adjusted to pre-exercise change of inflammatory and anti-inflammatory markers favoured HH (serum TNF-α [ES = 1.10; p = 0.024] and IL-10 [ES = 1.31; p = 0.009]). The exercise produced a similar moderate increment of myostatin in both groups, followed by a moderate non-significant reduction in HH throughout the recovery (ES = − 0.72; p = 0.21). The RT slightly increased the antioxidant response regardless of the environmental condition. These results revealed no clear impact of RT under acute hypoxia on the metabolic, TAC and muscle atrophy biomarkers. However, a coordinated pro/anti-inflammatory response balances the potentiated effect of RT on systemic inflammatioUniversidad de Granada/CBUA This research was funded by the Spanish Ministry of ScienceInnovation and Universities (grant number PGC2018-097388-B-I00-MCI/AEI/FEDER, UE)FEDER/Junta de Andalucía-Ministry of Economic TransformationIndustry, Knowledge and Universities (grant number B-CTS-374-UGR20
Clinical evaluation of antiseptic mouth rinses to reduce salivary load of SARS-CoV-2
Most public health measures to contain the COVID-19 pandemic are based on preventing the pathogen spread, and the use of oral antiseptics has been proposed as a strategy to reduce transmission risk. The aim of this manuscript is to test the efficacy of mouthwashes to reduce salivary viral load in vivo. This is a multi-centre, blinded, parallel-group, placebo-controlled randomised clinical trial that tests the effect of four mouthwashes (cetylpyridinium chloride, chlorhexidine, povidone-iodine and hydrogen peroxide) in SARS-CoV-2 salivary load measured by qPCR at baseline and 30, 60 and 120 min after the mouthrinse. A fifth group of patients used distilled water mouthrinse as a control. Eighty-four participants were recruited and divided into 12-15 per group. There were no statistically significant changes in salivary viral load after the use of the different mouthwashes. Although oral antiseptics have shown virucidal effects in vitro, our data show that salivary viral load in COVID-19 patients was not affected by the tested treatments. This could reflect that those mouthwashes are not effective in vivo, or that viral particles are not infective but viral RNA is still detected by PCR. Viral infectivity studies after the use of mouthwashes are therefore required
Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands
The worldwide phenomenon of shrub encroachment in grass-dominated dryland ecosystems is commonly associated with desertification. Studies of the purported desertification effects associated with shrub encroachment are often restricted to relatively few study areas, and document a narrow range of possible impacts upon biota and ecosystem processes. We conducted a study in degraded Mediterranean grasslands dominated by Stipa tenacissima to simultaneously evaluate the effects of shrub encroachment on the structure and composition of multiple biotic community components, and on various indicators of ecosystem function. Shrub encroachment enhanced vascular plant richness, biomass of fungi, actinomycetes and other bacteria, and was linked with greater soil fertility and N mineralization rates. While shrub encroachment may be a widespread phenomenon in drylands, an interpretation that this is an expression of desertification is not universal. Our results suggest that shrub establishment may be an important step in the reversal of desertification processes in the Mediterranean region.F.T.M. and M.A.B. were supported by ‘Ramón y Cajal’ and ‘Juan de la Cierva’ contracts from the Spanish MICINN (co-funded by the European Social Fund). F.T.M. was also supported by the British Ecological Society (ECPG 231/607 and Studentship 231/1975) and MICINN (CGL2008-00986-E/BOS project). This research was funded by grants from the Fundación BBVA (BIOCON06/105), Comunidad de Madrid (REMEDINAL, S-0505/AMB/0335), and Universidad Rey Juan Carlos (URJC-RNT-063-2).Peer reviewe
Antioxidant effects of insulin-like growth factor-I (IGF-I) in rats with advanced liver cirrhosis
BACKGROUND: The exogenous administration of Insulin-like Growth Factor-I (IGF-I) induces hepatoprotective and antifibrogenic actions in experimental liver cirrhosis. To better understand the possible pathways behind the beneficial effect of IGF-I, the aim of this work was to investigate severe parameters involved in oxidative damage in hepatic tissue from cirrhotic animals treated with IGF-I (2 μg. 100 g(-1). day(-1)). Iron and copper play an important role in oxidative mechanisms, producing the deleterious hydroxyl radical (*OH) that peroxides lipid membranes and damages DNA. Myeloperoxidase (MPO) and nitric oxide (NO) are known sources of free radicals and induce reduction of ferritin-Fe(3+ )into free Fe(2+), contributing to oxidative damage. METHODS: Liver cirrhosis was induced by CCl(4 )inhalation in Wistar male rats for 30 weeks. Healthy controls were studied in parallel (n = 10). Fe and Cu were assessed by atomic absoption spectrometry and iron content was also evaluated by Perls' staining. MPO was measured by ELISA and transferrin and ferritin by immunoturbidimetry. iNOS expression was studied by immuno-histochemistry. RESULTS: Liver cirrhosis was histologically proven and ascites was observed in all cirrhotic rats. Compared to controls untreated cirrhotic rats showed increased hepatic levels of iron, ferritin, transferrin (p < 0.01), copper, MPO and iNOS expression (p < 0.01). However, IGF-treatment induced a significant reduction of all these parameters (p < 0.05). CONCLUSION: the hepatoprotective and antifibrogenic effects of IGF-I in cirrhosis are associated with a diminution of the hepatic contents of several factors all of them involved in oxidative damage
Data from: Indices based on surface indicators predict soil functioning in Mediterranean semi-arid steppes
Methodologies based on indicators occupy a prevalent place when assessing ecosystem functioning and monitoring desertification processes because they are affordable yet do not compromise accuracy. The landscape function analysis (LFA), developed in Australia by David Tongway (CSIRO), uses soil surface indicators to assess the condition of a given ecosystem by producing three numerical indices (stability, infiltration and nutrient cycling) reflecting the status of basic soil functions. None of the previous studies aiming to validate the LFA indices have explored how they relate to surrogates of soil functioning using a large number of test sites capturing different climatic and soil conditions. We aimed to do so using data gathered in 29 Stipa tenacissima steppes in Spain. The nutrient cycling index was strongly correlated with soil variables related to microbial activity and nutrient cycling, such as soil pH, total soil N and P, soil respiration and phosphatase and β-glucosidase activities. Strong correlations between the infiltration index and both soil compaction and the water holding capacity of soils were found. The stability index was also significantly correlated with most of the soil variables evaluated. These relationships were evident in both gypsum and calcareous soils. Our results indicate that the LFA indices may be employed as surrogates of soil variables related to nutrient cycling and water infiltration in semi-arid S. tenacissima steppes. The LFA methodology has an enormous potential to assist land managers and policy makers in the establishment of cost-effective desertification monitoring and restoration programs in semi-arid environments
Data from: Indices based on surface indicators predict soil functioning in Mediterranean semi-arid steppes
Methodologies based on indicators occupy a prevalent place when assessing ecosystem functioning and monitoring desertification processes because they are affordable yet do not compromise accuracy. The landscape function analysis (LFA), developed in Australia by David Tongway (CSIRO), uses soil surface indicators to assess the condition of a given ecosystem by producing three numerical indices (stability, infiltration and nutrient cycling) reflecting the status of basic soil functions. None of the previous studies aiming to validate the LFA indices have explored how they relate to surrogates of soil functioning using a large number of test sites capturing different climatic and soil conditions. We aimed to do so using data gathered in 29 Stipa tenacissima steppes in Spain. The nutrient cycling index was strongly correlated with soil variables related to microbial activity and nutrient cycling, such as soil pH, total soil N and P, soil respiration and phosphatase and β-glucosidase activities. Strong correlations between the infiltration index and both soil compaction and the water holding capacity of soils were found. The stability index was also significantly correlated with most of the soil variables evaluated. These relationships were evident in both gypsum and calcareous soils. Our results indicate that the LFA indices may be employed as surrogates of soil variables related to nutrient cycling and water infiltration in semi-arid S. tenacissima steppes. The LFA methodology has an enormous potential to assist land managers and policy makers in the establishment of cost-effective desertification monitoring and restoration programs in semi-arid environments
Data from: Shrub encroachment does not reduce the activity of some soil enzymes in Mediterranean semiarid grasslands
Shrub encroachment is a worldwide phenomenon with implications for desertification and global change. We evaluated its effects on the activities of urease, phosphatase and b-glucosidase in Mediterranean semiarid grasslands dominated by Stipa tenacissima by sampling 12 sites with and without resprouting shrubs along a climatic gradient. The presence of shrubs affected the evaluated enzymes at different spatial scales. Soils under S. tenacissima tussocks and in bare ground areas devoid of vascular plants had higher values of phosphatase and urease when the shrubs were present. For the b-glucosidase, this effect was site-specific. At the scale of whole plots (30 m 30 m), shrubs increased soil enzyme activities between 2% (b-glucosidase) and 22% (urease), albeit these differences were significant only in the later case. Our results indicate that shrub encroachment does not reduce the activity of extracellular soil enzymes in S. tenacissima grasslands
Soil enzyme (phosphatase, b-glucosidase and urease) data from encroached/unencroached Stipa tenacissima steppes from Spain
Soil enzyme (phosphatase, b-glucosidase and urease) data from encroached/unencroached Stipa tenacissima steppes from Spai