121 research outputs found

    Effect of Short Periods of Normobaric Hyperoxia on Local Brain Tissue Oxygenation & Cerebrospinal Fluid Oxidative Stress Markers in Severe Traumatic Brain Injury

    Get PDF
    Preliminary evidence suggests that PbtO2 values of ¡Ü 15 mm Hg may be suggestive of brain tissue hypoxia. Accordingly, many neurotrauma intensive care units attempt to maintain the PbtO2 ¡Ý 20 mm Hg based on the belief that this intervention will increase availability of oxygen in the brain for metabolism, and will avoid periods of brain tissue hypoxia with a 5 mm Hg buffer range. In clinical practice, one approach to managing a low PbtO2 (< 20 torr) is to increase the delivered fraction of inspired oxygen (FiO2). It remains unclear whether this therapy has risks as it also has the potential to increase oxidative stress. To determine if short periods of normobaric hyperoxia (2h) affect oxidative stress markers and antioxidant defenses, cerebrospinal fluid (CSF) was assessed in adults [n=11, (9 male, 2 female), mean age 26¡À1.8 yrs], with severe TBI (Glasgow Coma Scale score 6¡À1.4) before, during, and after a FiO2=1.0 challenge. Markers of oxidative stress including lipid peroxidation (F2-isoprostane [ELISA]) and protein oxidation (protein sulfhydryls [fluorescence]) and markers of antioxidant defenses including total antioxidant reserve (AOR) [chemiluminescence] and glutathione [fluorescence] were evaluated in CSF. Physiological parameters, [intracranial pressure (ICP), mean arterial pressure (MAP), cerebral perfusion pressure (CPP), PbtO2, arterial oxygen content (pO2)] were assessed at the same time points, using a 30 minute average prior to each FiO2 change. Mean (¡ÀSD) PbtO2 and PaO2 levels significantly changed for each time point, [before 27.3¡À7.4, 173.1¡À51.4; during 93.9¡À58.1, 385.5¡À108.3; and after 29.3¡À13.0, 171.8¡À45.1] a FiO2 challenge, (p=.04; .01), respectively. Oxidative stress markers, antioxidant reserve defenses and physiological parameters did not significantly change for any time period. These preliminary findings suggest that brief periods of normobaric hyperoxia improve oxygen levels without producing local oxidative stress in brain tissue. Additional studies are required to examine extended periods of normobaric hyperoxia and application of treatment during periods of critical PbtO2 levels

    Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae

    Get PDF
    Traumatic brain injury (TBI) is characterized by acute neurological dysfunction and asso- ciated with the development of chronic traumatic encephalopathy (CTE) and Alzheimer’s disease. We previously showed that cis phosphorylated tau (cis P-tau), but not the trans form, contributes to tau pathology and functional impairment in an animal model of severe TBI. Here we found that in human samples obtained post TBI due to a variety of causes, cis P-tau is induced in cortical axons and cerebrospinal fluid and positively correlates with axonal injury and clinical outcome. Using mouse models of severe or repetitive TBI, we showed that cis P-tau elimination with a specific neutralizing antibody administered immediately or at delayed time points after injury, attenuates the development of neuropathology and brain dysfunction during acute and chronic phases including CTE-like pathology and dysfunction after repetitive TBI. Thus, cis P-tau contributes to short-term and long-term sequelae after TBI, but is effectively neutralized by cis antibody treatment

    A genome-wide association study of outcome from traumatic brain injury

    Get PDF
    Background Factors such as age, pre-injury health, and injury severity, account for less than 35% of outcome variability in traumatic brain injury (TBI). While some residual outcome variability may be attributable to genetic factors, published candidate gene association studies have often been underpowered and subject to publication bias. Methods We performed the first genome- and transcriptome-wide association studies (GWAS, TWAS) of genetic effects on outcome in TBI. The study population consisted of 5268 patients from prospective European and US studies, who attended hospital within 24 h of TBI, and satisfied local protocols for computed tomography. Findings The estimated heritability of TBI outcome was 0·26. GWAS revealed no genetic variants with genome-wide significance (p < 5 × 10−8), but identified 83 variants in 13 independent loci which met a lower pre-specified sub-genomic statistical threshold (p < 10−5). Similarly, none of the genes tested in TWAS met tissue-wide significance. An exploratory analysis of 75 published candidate variants associated with 28 genes revealed one replicable variant (rs1800450 in the MBL2 gene) which retained significance after correction for multiple comparison (p = 5·24 × 10−4). Interpretation While multiple novel loci reached less stringent thresholds, none achieved genome-wide significance. The overall heritability estimate, however, is consistent with the hypothesis that common genetic variation substantially contributes to inter-individual variability in TBI outcome. The meta-analytic approach to the GWAS and the availability of summary data allows for a continuous extension with additional cohorts as data becomes available.Additional co-authors: Ramon Diaz-Arrastia, Aarno Palotie, Samuli Ripatti, Jonathan Rosand, and David K. Menon on behalf of The Genetic Associations In Neurotrauma (GAIN) Consortium (with contribution from the CENTER-TBI, TRACK-TBI, CABI, MGB, and TBIcare studies

    COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury

    Get PDF
    Mild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits following moderate and/or severe head trauma. However, this has been disputed, and its role in mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val (158) Met polymorphism influences outcome on a cognitive battery 6 months following mTBI--Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second Edition Trial 1-5 Standard Score (CVLT-II). All patients had an emergency department Glasgow Coma Scale (GCS) of 13-15, no acute intracranial pathology on head CT, and no polytrauma as defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 100 subjects aged 40.9 (SD 15.2) years (COMT Met (158) /Met (158) 29 %, Met (158) /Val (158) 47 %, Val (158) /Val (158) 24 %) show that the COMT Met (158) allele (mean 101.6 ± SE 2.1) associates with higher nonverbal processing speed on the WAIS-PSI when compared to Val (158) /Val (158) homozygotes (93.8 ± SE 3.0) after controlling for demographics and injury severity (mean increase 7.9 points, 95 % CI [1.4 to 14.3], p = 0.017). The COMT Val (158) Met polymorphism did not associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, COMT Val (158) Met may preferentially modulate nonverbal cognition following uncomplicated mTBI.Registry: ClinicalTrials.gov Identifier NCT01565551

    DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 months following TBI-California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and recall on CVLT-II Trials 1-5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, presence of acute intracranial pathology on head computed tomography scan, and genotype of the ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive domains independent of ANKK1 following TBI

    DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 months following TBI-California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and recall on CVLT-II Trials 1-5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, presence of acute intracranial pathology on head computed tomography scan, and genotype of the ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive domains independent of ANKK1 following TBI

    Pre-injury Comorbidities Are Associated With Functional Impairment and Post-concussive Symptoms at 3- and 6-Months After Mild Traumatic Brain Injury: A TRACK-TBI Study

    Get PDF
    Introduction: Over 70% of traumatic brain injuries (TBI) are classified as mild (mTBI), which present heterogeneously. Associations between pre-injury comorbidities and outcomes are not well-understood, and understanding their status as risk factors may improve mTBI management and prognostication.Methods: mTBI subjects (GCS 13–15) from TRACK-TBI Pilot completing 3- and 6-month functional [Glasgow Outcome Scale-Extended (GOSE)] and post-concussive outcomes [Acute Concussion Evaluation (ACE) physical/cognitive/sleep/emotional subdomains] were extracted. Pre-injury comorbidities &gt;10% incidence were included in regressions for functional disability (GOSE ≤ 6) and post-concussive symptoms by subdomain. Odds ratios (OR) and mean differences (B) were reported. Significance was assessed at p &lt; 0.0083 (Bonferroni correction).Results: In 260 subjects sustaining blunt mTBI, mean age was 44.0-years and 70.4% were male. Baseline comorbidities &gt;10% incidence included psychiatric-30.0%, cardiac (hypertension)-23.8%, cardiac (structural/valvular/ischemic)-20.4%, gastrointestinal-15.8%, pulmonary-15.0%, and headache/migraine-11.5%. At 3- and 6-months separately, 30.8% had GOSE ≤ 6. At 3-months, psychiatric (GOSE ≤ 6: OR = 2.75, 95% CI [1.44–5.27]; ACE-physical: B = 1.06 [0.38–1.73]; ACE-cognitive: B = 0.72 [0.26–1.17]; ACE-sleep: B = 0.46 [0.17–0.75]; ACE-emotional: B = 0.64 [0.25–1.03]), headache/migraine (GOSE ≤ 6: OR = 4.10 [1.67–10.07]; ACE-sleep: B = 0.57 [0.15–1.00]; ACE-emotional: B = 0.92 [0.35–1.49]), and gastrointestinal history (ACE-physical: B = 1.25 [0.41–2.10]) were multivariable predictors of worse outcomes. At 6-months, psychiatric (GOSE ≤ 6: OR = 2.57 [1.38–4.77]; ACE-physical: B = 1.38 [0.68–2.09]; ACE-cognitive: B = 0.74 [0.28–1.20]; ACE-sleep: B = 0.51 [0.20–0.83]; ACE-emotional: B = 0.93 [0.53–1.33]), and headache/migraine history (ACE-physical: B = 1.81 [0.79–2.84]) predicted worse outcomes.Conclusions: Pre-injury psychiatric and pre-injury headache/migraine symptoms are risk factors for worse functional and post-concussive outcomes at 3- and 6-months post-mTBI. mTBI patients presenting to acute care should be evaluated for psychiatric and headache/migraine history, with lower thresholds for providing TBI education/resources, surveillance, and follow-up/referrals.Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT01565551

    Drug repurposing for COVID-19 based on an integrative meta-analysis of SARS-CoV-2 induced gene signature in human airway epithelium

    No full text
    Drug repurposing has the potential to bring existing de-risked drugs for effective intervention in an ongoing pandemic-COVID-19 that has infected over 131 million, with 2.8 million people succumbing to the illness globally (as of April 04, 2021). We have used a novel `gene signature\u27-based drug repositioning strategy by applying widely accepted gene ranking algorithms to prioritize the FDA approved or under trial drugs. We mined publically available RNA sequencing (RNA-Seq) data using CLC Genomics Workbench 20 (QIAGEN) and identified 283 differentially expressed genes (FDR\u3c0.05, log2FC\u3e1) after a meta-analysis of three independent studies which were based on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection in primary human airway epithelial cells. Ingenuity Pathway Analysis (IPA) revealed that SARS-CoV-2 activated key canonical pathways and gene networks that intricately regulate general anti-viral as well as specific inflammatory pathways. Drug database, extracted from the Metacore and IPA, identified 15 drug targets (with information on COVID-19 pathogenesis) with 46 existing drugs as potential-novel candidates for repurposing for COVID-19 treatment. We found 35 novel drugs that inhibit targets (ALPL, CXCL8, and IL6) already in clinical trials for COVID-19. Also, we found 6 existing drugs against 4 potential anti-COVID-19 targets (CCL20, CSF3, CXCL1, CXCL10) that might have novel anti-COVID-19 indications. Finally, these drug targets were computationally prioritized based on gene ranking algorithms, which revealed CXCL10 as the common and strongest candidate with 2 existing drugs. Furthermore, the list of 283 SARS-CoV-2-associated proteins could be valuable not only as anti-COVID-19 targets but also useful for COVID-19 biomarker development
    corecore