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Preliminary evidence suggests that PbtO2 values of ≤ 15 mm Hg may be suggestive of brain 

tissue hypoxia.  Accordingly, many neurotrauma intensive care units attempt to maintain the 

PbtO2 ≥ 20 mm Hg based on the belief that this intervention will increase availability of oxygen 

in the brain for metabolism, and will avoid periods of brain tissue hypoxia with a 5 mm Hg 

buffer range.  In clinical practice, one approach to managing a low PbtO2 (< 20 torr) is to 

increase the delivered fraction of inspired oxygen (FiO2).  It remains unclear whether this 

therapy has risks as it also has the potential to increase oxidative stress.  To determine if short 

periods of normobaric hyperoxia (2h) affect oxidative stress markers and antioxidant defenses, 

cerebrospinal fluid (CSF) was assessed in adults [n=11, (9 male, 2 female), mean age 26±1.8 

yrs], with severe TBI (Glasgow Coma Scale score 6±1.4) before, during, and after a FiO2=1.0 

challenge.  Markers of oxidative stress including lipid peroxidation (F2-isoprostane [ELISA]) and 

protein oxidation (protein sulfhydryls [fluorescence]) and markers of antioxidant defenses 

including total antioxidant reserve (AOR) [chemiluminescence] and glutathione [fluorescence] 

were evaluated in CSF.  Physiological parameters, [intracranial pressure (ICP), mean arterial 

pressure (MAP), cerebral perfusion pressure (CPP), PbtO2, arterial oxygen content (pO2)] were 

assessed at the same time points, using a 30 minute average prior to each FiO2 change.  Mean 

(±SD) PbtO2 and PaO2 levels significantly changed for each time point, [before 27.3±7.4, 
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173.1±51.4; during 93.9±58.1, 385.5±108.3; and after 29.3±13.0, 171.8±45.1] a FiO2 challenge, 

(p=.04; .01), respectively.  Oxidative stress markers, antioxidant reserve defenses and 

physiological parameters did not significantly change for any time period.  These preliminary 

findings suggest that brief periods of normobaric hyperoxia improve oxygen levels without 

producing local oxidative stress in brain tissue.  Additional studies are required to examine 

extended periods of normobaric hyperoxia and application of treatment during periods of critical 

PbtO2 levels.  
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1.0  INTRODUCTION 

Traumatic brain injury (TBI) is a major public health concern, with 1.5 to 2 million people 

affected each year in the United States (Langlois et al., 2003).  It is estimated that 50,000 

individuals per year suffer a severe TBI.  Among the subset of individuals who experience a 

severe TBI, mortality is estimated to be 20%, with 50-70% of the survivors experiencing 

permanent neurological disabilities that limit their return to school or the workforce (Torner, 

1999).  The majority of TBI victims are less than 30 years of age at the time of their injury, 

resulting in an estimated loss of productive years that is greater than estimates for cancer and 

cardiovascular disease combined.  Annual costs for the acute, rehabilitative, and home care of 

TBI patients are estimated to be $4 million (Torner, 1999), with annual lifetime costs of TBI, 

including lost productivity, estimated at $60 billion (Finkelstein, 2006). 

Although the statistics are daunting, it has been shown that neurological improvement 

can occur even in the most severely injured sub-population (King, Carlier, & Marion, 2005).  

TBI mortality and morbidity is a combination of two phases of injury, primary and secondary.  

Primary injury in TBI results from the direct impact of the external force which can damage 

brain parenchymal tissue and axons.  Advances in automotive technology and law enforcement 

of safety adherence have decreased the incidence of TBI and the severity of the primary injury at 

the time of the accident (McGwin, Metzger, & Rue, 2004; Metzger, McGwin, MacLennan, & 

Rue, 2004; Stewart et al., 2003).  Secondary injury after TBI occurs as a result of additional 
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insults to the brain that ultimately worsen neurological outcome.  The two most severe secondary 

insults, hypotension and hypoxemia, can exponentially compound neurological recovery and 

mortality (Rosner & Daughton, 1990).  Of concern, ischemic damage has been found in over 

50% of post-mortem tissue from TBI patients following autopsy (D. I. Graham et al., 1989).  In 

addition to low cerebral blood flow and oxygenation, biochemical cascades are also set in motion 

that cause tissue damage and cell death (Bareyre, Wahl, McIntosh, & Stutzmann, 1997; Busto, 

Dietrich, Globus, Alonso, & Ginsberg, 1997; Clark et al., 1997; Dixon, Bao, Long, & Hayes, 

1996; S. H. Graham, Chen, & Clark, 2000; Hayes, Yang, Whitson, & Postmantur, 1995; 

Kochanek et al., 1995; Raghupathi & McIntosh, 1996).  Three biochemical pathways, in 

particular, have been implicated as key participants in this cascade of secondary injury, 

glutamate excitotoxicity, calcium overload, and oxidative stress (Juurlink & Paterson, 1998).  

The ultimate goal of acute management of patients following TBI is to minimize or prevent 

secondary injury from occurring and thus improve neurological outcome. 

Within the last decade, treatment of TBI has become more standardized with the adoption 

of the Guidelines for Management of Severe Traumatic Brain Injury ("Guidelines for the 

management of severe traumatic brain injury," 2007).  Implementation of these guidelines begins 

at the scene of the accident with rapid triage and stabilization of the patient, and includes 

management in a designated neurotrauma intensive care unit (NTICU) during the acute post 

injury phase, with the common thread being the prevention of hypotension and hypoxemia.  The 

two parameters currently used to monitor the potential contribution of blood pressure and brain 

perfusion during the acute post-injury phase are mean arterial pressure (MAP) and cerebral 

perfusion pressure (CPP).  Systemic hypoxemia is measured using arterial oxygen saturation 

(SaO2), arterial partial pressure of oxygen (PaO2), and hemoglobin content (Hg).  
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Brain tissue oxygenation (PbtO2), a recent addition to monitoring, can also be 

continuously assessed, providing the critical care team an in vivo tool to directly quantify 

changes in brain oxygenation at the local level.  The ability to monitor PbtO2 is emerging as an 

important advancement in critical care management, as very low PbtO2 values are associated 

with poor neurological outcome and death (Valadka, Gopinath, Contant, Uzura, & Robertson, 

1998).  Currently, there is no management standard for treatment of low PbtO2 values; however, 

some critical care teams treat falling or low PbtO2 values by increasing the fraction of inspired 

oxygen (FiO2) through the ventilator. Although effective in increasing PbtO2 values, and 

presumably oxygen delivery to the brain, there is concern that this therapy may increase 

secondary injury within the injured brain (Longhi & Stocchetti, 2004).  Studies in children (Bayir 

et al., 2002) and adults (Wagner et al., 2004) have shown that antioxidant reserves are markedly 

depleted and biomarkers of oxidative stress are increased in the acute period after TBI, 

potentially placing the already vulnerable brain at risk for secondary injury.  In experimental 

studies, hyperoxia has increased artificially induced apoptotic neuronal death and increased 

protein carbonyls (Kaindl et al., 2006).   

Increased brain tissue oxygen concentrations, theoretically, could disrupt the normal 

reducing homeostasis within the cell and thus paradoxically increase free-radical production and 

free radical-mediated tissue damage.  Reactive oxygen species (ROS) produced during normal 

metabolism are involved in enzymatic reactions, mitochondrial electron transport, signal 

transduction, activation of nuclear transcription factors, gene expression and the antimicrobial 

action of neutrophils and macrophages (Bayir, 2005; Halliwell, 1989).  The accumulation of free 

radicals is prevented by an active reducing environment which is maintained by antioxidant 

enzymes and substances, such as glutathione and ascorbate.  Oxidative stress and subsequent 
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oxidative injury will occur in an environment of an altered reduction state or depletion of 

antioxidants (Halliwell, 1992).  Lipid membranes are the most sensitive to free radical 

accumulation and, as such, alterations in their biochemistry are early indicators of oxidative 

damage.  F2-isoprostane is a marker of lipid peroxidation.  Protein damage may also result from 

free radical damage, with the loss of protein sulfhydryl groups (Levine, Moskovitz, & Stadtman, 

2000).  Loss of protein sulfhydryls is an indication of protein oxidation.  Disruption of 

antioxidant processes can be assessed by measurement of the antioxidant, glutathione, and 

measurement of total antioxidant reserve (Tyurin et al., 2000).  By measuring changes in 

markers of oxidative stress, (e.g., F2-isoprostane and protein sulfhydryls), and antioxidant 

defenses, (e.g., glutathione and total antioxidant reserve), in relation to a FiO2 challenge, it will 

be possible to gain further insight into the biochemical consequences of normobaric hyperoxia in 

the acute period after a severe TBI. 

1.1 PURPOSE 

The purpose of this study was to examine the effect of a brief period of normobaric hyperoxia on 

physiological parameters and biochemical markers of oxidative stress and antioxidant defenses 

in patients admitted to a Level 1 trauma center who have sustained a severe TBI. 
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1.2 SPECIFIC AIMS 

Specific Aim 1:  To determine the effect of a short period of normobaric hyperoxia, via a FiO2 

challenge (100% oxygen administered for 2 hours) on key physiological values:  local brain 

tissue oxygenation (PbtO2), global brain perfusion (cerebral perfusion pressure [CPP]), and 

intracranial pressure (ICP) after severe TBI.   

. H 1.1:  A FiO2 challenge will significantly increase PbtO2, providing evidence for 

improvement of brain oxygenation. 

H 1.2:  A FiO2 challenge will significantly decrease ICP, thus improving CPP, 

providing evidence for improvement of cerebral perfusion. 

Specific Aim 2:   To determine the effect of a short period of normobaric hyperoxia via a FiO2 

challenge on biochemical markers of oxidative stress and antioxidant defenses in CSF after 

severe TBI.   

H 1.1:  A FiO2 challenge will significantly increase biomarkers of oxidative stress 

(as measured by increased F2-isoprostane and decreased protein sulfhydryls) in 

CSF, providing evidence that normobaric hyperoxia treatment exacerbates 

oxidative stress injury in compromised brain. 

H 1.2:  A FiO2 challenge will significantly decrease biomarkers of antioxidant 

reserves (as measured by glutathione and total antioxidant reserve) in CSF, 

providing evidence that normobaric hyperoxia treatment places the injured brain 

at risk for oxidative stress injury. 
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1.3 DEFINITION OF TERMS 

Severe TBI:  TBI is defined as a closed head injury due to blunt trauma resulting in intracranial 

injury and permanent or temporary cognitive and physical impairment. The severity of the TBI is 

determined by the level of consciousness, specifically assessed by the Glasgow Coma Scale 

(GCS) score (Teasdale & Jennett, 1974).  The GCS score ranges from 3-15, with 15 being a 

normal level of consciousness.  In this study, a severe TBI was defined as a GCS score of ≤ 8, 

not following commands, within 24 hours of injury, and without the influence of alcohol, 

sedatives or paralytics.   

 

Independent Variable: 

FiO2 challenge:  In the multi-trauma patient, FiO2 is temporarily increased (FiO2 0.90) during the 

resuscitative period in the emergency room.  After transport to the NTICU, the FiO2 is decreased 

to ≤ .60 as quickly as tolerated while maintaining the arterial oxygen saturation > 94% and PaO2 

> 90mm Hg.  In this study, a FiO2 challenge was defined as a 2 hour period when the FiO2 

delivered by the mechanical ventilation was increased to 1.0.  The FiO2 challenge was performed 

24-48 hours after admission to the NTICU and a minimum of 2 hours after stabilization of FiO2 

≤ .60.  This time point was selected to avoid the initial trauma-related increase in oxidative stress 

markers described by Bayir (Bayir et al., 2002; Wagner et al., 2004), and yet sample the injured 

brain at a time when PbtO2 monitoring would normally be occurring. 

 

Dependent Variables: 

Physiological Parameters:  PbtO2, ICP, mean arterial pressure (MAP) and CPP values were 

continuously collected via the patient’s monitor, and minute data downloaded to a patient data 
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server that is stored by the Brain Trauma Research Center.  For each study time point (before, 

during, and after FiO2 challenge), the final; 30 minutes of data collection prior to CSF sampling 

was averaged to provide a comparison to the CSF collection time for each of the three collection 

points. 

PbtO2 was measured by an oxygen sensor placed in the brain parenchyma after severe 

TBI diagnosis (usually within 24 hours of injury). The values obtained are thought to 

reflect availability of oxygen at the cellular level, with an increase in PbtO2 indicative of 

an increase in oxygen supply to the tissue.  In this study, PbtO2 was measured using a 

Licox® brain oxygenation probe (Integra Neurosciences™) placed within the brain 

parenchyma as standard clinical management for severe TBI patients at this institution. 

ICP was measured by a pressure monitor placed within the lateral ventricle of the brain 

that was connected to a catheter (extraventricular drain [EVD]) with a dual purpose of 

pressure readings and drainage of CSF for sampling and treatment.  Continuous pressure 

readings were obtained when the tubing system was in the closed position.  In this study, 

ICP was defined as the pressure reading obtained from this continuous monitoring 

system. 

MAP was calculated as [2 (diastolic blood pressure) + systolic blood pressure]/ 3.   

Arterial blood pressure was measured by a catheter placed in the radial artery that was 

connected to a pressure monitor.  The calculation of MAP was transformed within the 

patient monitor (Hewlett Packard/Philips Medical Systems, Bothell, WA) and displayed 

as a digital value.  In this study, MAP was defined as the continuous calculated reading 

obtained from the patient monitor. 
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CPP was calculated as MAP – ICP, and is a measurement of the blood pressure gradient 

that dictates blood flow to the brain governing subsequent oxygen and nutrient delivery. 

The calculation of CPP was performed within the patient monitor and displayed as a 

digital value.  CPP was recorded continuously when ICP and MAP monitoring are 

simultaneously being performed.  In this study, CPP was defined as the continuous 

calculated reading obtained from the patient monitor. 

 

Oxidative Stress was defined as an abnormal state of disequilibrium between oxidation and 

reduction states.  This may be a result of excessive accumulation of ROS from oxidation or the 

decrease in reduction potential resulting from a decrease in antioxidant defenses.  This study 

utilized two markers of oxidative stress: 

F2-Isoprostane: The brain has an inherent high metabolic rate with a physical makeup 

predominantly of polyunsaturated fatty acids in neuronal membranes.  When arachidonic 

acid-containing lipids are oxidized by free radicals, the products include F2-isoprostanes, 

a family of prostaglandin F2-like compounds.  These are stable, reliable markers of in 

vivo oxidative stress (Roberts & Morrow, 2000) that can be detected in biological fluids 

such as CSF (Bayir et al., 2002; Morrow, Minton, & Roberts, 1992).  In this study, F2-

Isoprostane was measured using a commercially available enzyme immunoassay kit 

(Cayman Chemical, Ann Arbor, MI), with a detection threshold of 5 pg/ml.   

 

Protein Sulfhydryls:  Thiols are especially sensitive to ROS attack.  In the basal state, 

levels of S-thiolated proteins are extremely low, constituting <1% of the total protein 

levels.  A decrease in protein  sulfhydryls reflects an increase in oxidative stress damage 
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(Chai, Hendrich, & Thomas, 1994), from loss of protein thiols.  In this study, protein 

sulfhydryls  were measured using a fluorescence assay technique (Langmuir et al., 1996). 

 

Antioxidant Defense was defined as the normal biochemical reduction reaction in response to 

oxidation.  Antioxidant defenses correct imbalances between oxidation and reduction states in 

cells.  A decrease in antioxidant defenses and/or an accumulation of reactive oxidative species 

(ROS) may result in oxidative stress.  This study utilized two markers of antioxidant defenses: 

Glutathione (GSH) is a tripeptide, L-γ-glutamyl-L-cysteinyl-glycine, with a molecular 

weight of 307.  It is the major regulator of the intracellular reduction state (Meister, 1992; 

Meister & Anderson, 1983).  GSH is the antioxidant present in the highest concentrations 

in cells of all organs, including the brain.  GSH protects the brain against ROS and is 

involved in the disposal of peroxides.  CSF levels of GSH are reflective of the amount of 

antioxidant properties present within the brain.  In this study, glutathione content was 

estimated using a fluorescence assay technique (Langmuir et al., 1996). 

Total Antioxidant Reserve (AOR) was defined as the pool of antioxidants present in a 

sample that have a net result in reducing oxidants.  This pool contains water soluble 

antioxidants, of which 90% are composed of glutathione, ascorbate, and urate.  A known 

amount of peroxyl radicals was added to the CSF sample, and the amount of radicals 

scavenged was determined and represents the total endogenous antioxidants.  This value 

was compared to standard, known values.  In this study, total antioxidant reserve in CSF 

was estimated using a chemiluminescense assay (Tyurina et al., 1995). 
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1.4 CONCEPTUAL FRAMEWORK 

In the normal basal state of aerobic metabolism, an equilibrium exists between oxidation and 

reduction (Figure 1). Oxidation results in the generation of ROS and their intermediates.  

Reduction reduces the ROS and intermediates to less toxic components, and thus mitigates 

oxidative damage.  Oxidative stress results when this balance is disrupted with increased 

oxidation or decreased reduction.  Several factors can compound this balance, such as hereditary 

factors, disease processes, and the external environment. 
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Figure 1:  Normal equilibrium between oxidation and reduction 

 

The conceptual framework for this proposed study is illustrated in Figure 2.  Following a 

severe TBI, to maximize a favorable neurological outcome, it is imperative that secondary injury 

is minimized in the acute post-injury phase.  When brain tissue oxygenation is threatened to 

ischemic levels, as in a PbtO2 level < 20 mm Hg, FiO2 is raised by the critical care team.  This 

study was designed to evaluate the effect of increasing the FiO2 concentration to 1.0 on the 

physiological (PbtO2, CPP, and ICP) and the biochemical (oxidative stress and antioxidant 

reserve markers) response to this change.  The goal was to examine the impact of normobaric 

hyperoxia treatment on measures of tissue oxygenation and oxidative stress.  This approach was 
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chosen to determine if the emerging intervention (normobaric hyperoxia, an increase in the FiO2) 

is producing beneficial or detrimental actions on recovery of the injured brain after severe TBI. 

 

 

Figure 2:  Conceptual Framework Schematic 

1.5 SIGNIFICANCE  

Prevention and minimization of secondary injury during the acute post-injury phase is the goal of 

the critical care team caring for patients with severe TBI.  Standard clinical orders are written 

with set parameters to maintain physiological vital signs with the goal of avoiding any episodes 
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of hypotension or hypoxemia.  Continuous cerebral and systemic hemodynamic monitoring in a 

specialized NTICU allows specialized care of severe TBI patients.  The importance of this 

specialized nursing vigilance is evident in a study by Rosner et al (Rosner & Daughton, 1990) 

who identified that even one episode when the CPP decreases to < 50 mm Hg can double the risk 

of morbidity and mortality (Rosner & Daughton, 1990).  Further, mortality has been shown to 

increase approximately 20% for each 10 mmHg decrease in CPP.  Although CPP and ICP are the 

‘gold standards’ for neurocritical care monitoring, it is also recognized that brain tissue hypoxia 

and/or infarction can occur with no corresponding change in ICP or CPP (Stocchetti et al., 1998).   

Recent advances in neurological monitoring include the continuous measurement of 

PbtO2, thus enabling the neurosurgical team an in vivo tool to directly visualize changes in brain 

oxygenation.  Since cerebral oxygenation is the most critical function of cerebral blood flow, 

additional monitoring of this parameter is likely to be important to direct therapy in severe TBI 

patients who are at greatest risk for ischemic sequelae.  Valadka, et al (1998) reported that the 

longer a patient’s PbtO2 values are <15 torr, the greater the likelihood for death.  In this study, 

the critical threshold value was 6 torr (Valadka et al., 1998).  Stiefel (2005) compared the 

neurological outcome of patients having PbtO2 monitoring in addition to ICP monitoring versus 

historical controls with ICP monitoring alone, and reported a 25% improvement in favorable 

outcomes (Stiefel et al., 2005).  Although this study has been criticized for ignoring potentially 

confounding factors that may have affected neurological outcome, use of this monitoring 

parameter is increasing nationwide.   

Although many institutions have implemented PbtO2 monitoring and institute various 

treatment modalities when the PbtO2 values decrease, the Guidelines for Management of Severe 

Traumatic Brain Injury ("Guidelines for the management of severe traumatic brain injury," 
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2007) have deemed this monitoring as a class III option with no current standardization of 

treatment targeting low PbtO2 values.  Increases in arterial oxygen delivery (caused by an 

increase in the FiO2) readily increase PbtO2 values, and a ‘sliding scale’ to obtain a PbtO2 > 20 

torr is often targeted in some institutions.  However, the effect of normobaric hyperoxia has not 

yet been examined in relation to oxidative stress and antioxidant reserve in the setting of severe 

TBI.  It is possible that paradoxically increasing PbtO2, may place the injured brain at additional 

risk for secondary damage. 

The project described herein is innovative as it is the first, to our knowledge, that has 

evaluated the implications of using this new neurological monitoring device (Licox®, Integra 

Neurosciences™, Plainsboro, NJ) in the clinical setting of severe TBI in relation to biomarkers of 

oxidative stress that are uniquely measured as a battery at the University of Pittsburgh.  This 

project is on the cutting edge of nursing research as bedside nurses monitor changes in PbtO2, 

and independently, or in collaboration with the respiratory care team, alter FiO2 concentrations to 

adjust PbtO2 within the desired range. 
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2.0  LITERATURE REVIEW 

2.1 TRAUMATIC BRAIN INJURY 

TBI is a public health concern, with 1.5 to 2 million people affected each year in the United 

States (Langlois et al., 2003).  It is estimated that 50,000 individuals per year suffer a severe TBI.  

In this severe TBI subset, a 20% mortality rate has been reported, with 50-70% of these survivors 

having permanent neurological disabilities that limit their return to school or the workforce 

(Torner, 1999).  Annual costs for the acute, rehabilitative and home care of TBI patients are 

estimated to be $4 billion (Torner, 1999).  Factoring in the loss of productivity due to the young 

population that is affected, this estimate increases dramatically to $60 billion in the United States 

per year (Finkelstein, 2006).  Quality of life is affected, not only for the individual, but also for 

the family. 

During the late 1980’s, surveys conducted by the Agency for Health Care Policy and 

Research, Department of Health and Human Services indicated that treatment provided for TBI 

patients varied across hospitals throughout the United States.  Ten years later, a survey that 

involved 261 trauma centers throughout the United States reported the same findings (Ghajar et 

al., 1995). To address this nationwide problem, ten prominent neurosurgeons specializing in 

neurotrauma responded by conducting an extensive literature review of studies that tested the 

efficacy of commonly used therapies for the acute care of patients with severe TBI ("Guidelines 
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for the management of severe head injury. Brain Trauma Foundation, American Association of 

Neurological Surgeons, Joint Section on Neurotrauma and Critical Care," 1996).  In 1995, this 

effort resulted in the publication of the first evidence-based Guidelines for the Management of 

Severe Head Injury by the Brain Trauma Foundation, in collaboration with and endorsement 

from the American Association of Neurological Surgeons (Bullock et al., 1996).  This document 

provided guidelines for consistent acute care of patients with severe TBI and has since been 

endorsed by The American Association of Neurologic Surgeons, the World Health Organization 

Neurotrauma Committee, and the New York State Department of Health.  The Guidelines have 

been integrated into the European Brain Injury Consortium (Maas et al., 1997) and distributed to 

all members of the American Association of Neurological Surgeons.  They are updated 

periodically with the most current version in 2007 ("Guidelines for the management of severe 

traumatic brain injury," 2007).  The principles elucidated in the Guidelines provide intensive 

treatment strategies but allow adjustments for individualized care of the injured brain and non-

central nervous system injuries.  While a major step in improving care of the patient who 

experiences a TBI, understanding of the complex circumstances which contribute to secondary 

injury following this injury remains incomplete. 

2.2 SECONDARY INJURY IN TBI 

There are two types of injury that occur after TBI, primary and secondary injury.  Primary injury 

occurs as a consequence of the impact of the external force and produces injury by directly 

damaging brain parenchymal tissue or stretching axons.  In addition, the primary injury sets in 

motion a biochemical cascade which causes additional injury, as shown in laboratory and clinical 
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studies (Bareyre et al., 1997; Busto et al., 1997; Clark et al., 1997; Dixon et al., 1996; S. H. 

Graham et al., 2000; Hayes et al., 1995; Kochanek et al., 1995; Raghupathi & McIntosh, 1996).   

Three biochemical pathways have been implicated as key participants in this biochemical 

cascade of secondary injury:  glutamate excitotoxicity, calcium overload, and oxidative stress 

(Juurlink & Paterson, 1998) (Figure 3).  Under ischemic conditions, cerebral blood flow, oxygen 

and glucose delivery are decreased, resulting in calcium accumulation, the release of glutamate, 

and free radical generation, all of which may result in apoptosis, or cell death, if not reversed. 

 

Figure 3:  Cellular Responses Following Secondary Injury:  Schematic illustrating the cellular 

response to TBI during an ischemic event, if the process is not reversed [adapted from a published review 

(Zauner, Daugherty, Bullock, & Warner, 2002)]. 
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The ultimate goal of the acute care treatment after TBI is to minimize and prevent 

secondary injury from occurring and thus improve neurological outcome.  A major focus of 

research to minimize the impact of secondary injury relates to improving the understanding of 

biochemical responses.  Prior studies have shown that biochemical mediators are released during 

periods of ischemia and also as a consequence of primary and secondary insults to the brain.  

These mediators are thought to play a major role in influencing the recovery process (Bullock et 

al., 1998). Various neurochemicals have been implicated in the cascade of events that cause 

secondary injury, with the most common being the neurotoxic build-up of extracellular 

concentrations of the excitatory amino acid (EAA) glutamate.   

Glutamate concentrations have been shown to increase in laboratory studies examining 

functional outcome following TBI (Faden, Demediuk, Panter, & Vink, 1989; Globus, Alonso, 

Dietrich, Busto, & Ginsberg, 1995; Katayama, Becker, Tamura, & Hovda, 1990; Matsushita, 

Shima, Nawashiro, & Wada, 2000)  and in humans after TBI (Bullock, 1994; Bullock, Zauner, 

Woodward, & Young, 1995; Palmer, Marion, Botscheller, Bowen, & DeKosky, 1994; Stover et 

al., 1999).  Glutamate toxicity depends on the energy state of the nervous tissue, with greater 

toxicity in low glucose and low oxygen environments (Novelli, Reilly, Lysko, & Henneberry, 

1988), a finding that suggests a key role during ischemic periods.  Poor neurological outcome, 

defined as 6-month Glasgow Outcome Scale (GOS) score of 1-3 (dead, vegetative state or severe 

impairment), has been shown to correlate with increased extracellular glutamate levels (Bullock, 

1994).  However despite the strong correlational evidence for glutamate toxicity and poor 

outcomes, efforts to attenuate this increase have shown success in animal models (Lewen, 

Fredriksson, Li, Olsson, & Hillered, 1999; Okiyama, Smith, White, Richter, & McIntosh, 1997; 
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Phillips, Lyeth, Hamm, Reeves, & Povlishock, 1998) but not in clinical trials (Doppenberg & 

Bullock, 1997). 

Glutamate toxicity may also occur in conjunction with two additional biochemical 

cascades, calcium overload and oxidative stress, leading to additive or multiplicative effects on 

neurological outcome following a TBI.  Although glutamate receptors have been implicated as 

the major pathway contributing to toxic calcium influx resulting in neuronal death (Choi, 1988), 

calcium derangement can occur under other conditions and pathways. 

Under normal physiological conditions, neurons tightly regulate calcium homeostasis.  In 

abnormal conditions, such as TBI, calcium influx occurs through damaged channels which 

results in excessive intracellular accumulation.   This excessive intracellular calcium causes 

further cellular and mitochondrial damage with the breakdown of proteins, swelling of the 

mitochondrial, damaging the DNA leading to programmed cell death, or apoptosis.  

An active focus of current research involves identifying the interplay and triggering of 

these cascades and minimization of target effects.  Oxidative stress, described below, is also a 

cause of biochemical disarray. 

 

2.3 CEREBRAL ISCHEMIA AND BRAIN OXYGENATION IN TBI 

Systemic insults caused by the multi-trauma nature of the overall injury can also impair cerebral 

blood flow and oxygenation with the development of hypotension and hypoxemia. These 

consequences can exponentially compound adverse effects from the initial injury and potentiate 

the effects of secondary injury (Chesnut, Marshall, Klauber et al., 1993).  Of concern, ischemic 
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changes have been found in over 50% of post-mortem tissue from TBI patients (D. I. Graham et 

al., 1989), suggesting that ischemic changes are common.  The ultimate goal of the acute care 

treatment after TBI is to minimize and prevent secondary injury from occurring and thus 

improve neurological outcome. 

The regulation of CBF is controlled by cerebral metabolism, levels of carbon dioxide and 

oxygen, CPP, and neurogenic mechanisms.  CBF is relatively higher in the brain, compared to 

other organs and is approximately 50 ml/100g/minute.  In the uninjured brain, the CBF is tightly 

controlled; however, temporary regional increases do occur during certain tasks, such as 

controlled movements, and with CBF and glucose utilization.  Following TBI, patients have been 

observed to experience an ‘uncoupling’ of CBF and metabolism that leads to the development of 

cerebral ischemia (Bergsneider et al., 2000). 

Marion (Marion, Darby, & Yonas, 1991) studied 32 severe head-injured adults having a 

total of 61 cerebral blood flow studies utilizing the xenon-computerized tomography method 

(Gur, Good, Wolfson, Yonas, & Shabason, 1982), and found that immediately after a TBI, the 

human brain enters a hypoperfusion state (< 32.9 cc/100gm/min) that may last for 24 to 48 hours 

(Marion et al., 1991).  Studies in experimental models have shown up to a 74% reduction in CBF 

during the hypoperfusion state (Hendrich et al., 1999).  This period of hypoperfusion may cause 

ischemic changes that are detrimental to the recovering brain (Golding, Robertson, & Bryan, 

1999).  Additional studies have shown that this hypoperfusion state may persist in non-survivors 

(Hlatky, Contant, Diaz-Marchan, Valadka, & Robertson, 2004; Marion et al., 1991) whereas in 

survivors, it is often followed by a state of hyperemia or ‘luxury flow’ (Marion et al., 1991).   

Bouma et al (Bouma, Muizelaar, Choi, Newlon, & Young, 1991) examined early CBF 

defined as the first 6 hours after injury using intravenous 133Xe and related the results to 

 20 



differences in arteriovenous oxygen content and neurological outcome in 186 TBI patients 

(Bouma et al., 1991).  Twenty-four severe TBI patients (13%) experienced a global CBF of < 18 

ml/100gm/min, defined as the threshold for infarction, during their course of monitoring.  The 

neurological outcome for this ischemic group of patients was compared to a group of 

nonischemic patients (n=160).  Findings indicated a trend for poorer outcomes and higher 

mortality rates (p<.04).  This study exemplifies the importance of interventions to prevent 

cerebral ischemia with the goal of improving neurological outcome. 

Chesnut et al (Chesnut, Marshall, Klauber et al., 1993) examined the prevalence of 

secondary insults, namely hypotension and hypoxia, in patients enrolled in the Traumatic Coma 

Data Bank (TCDB) to determine their relationship to outcome.  Hypotension was present in 35% 

of 717 patients in the TCDB with an associated 150% increase in mortality (Chesnut, Marshall, 

Klauber et al., 1993).  In a related study, these investigators prospectively examined early 

hypotension (injury through resuscitation; n=717) and late hypotension (intensive care unit; 

n=493) in head-injured patients within the TCDB (Chesnut, Marshall, Piek et al., 1993).  Early 

hypotension occurred in 35% (n=248) and late hypotension occurred in 32% (n=156) of this 

cohort.  Hypotension doubled the mortality rate if occurring early after injury, and tripled poor 

outcome (death or vegetative) if occurring later.  Logistic regression modeling was used 

controlling for age, admission GCS motor score, hypoxia, and extracranial trauma.  One episode 

of hypotension occurred in 117 patients and 66% of these patients died or did not recover beyond 

a vegetative state (Chesnut, Marshall, Piek et al., 1993).  Conversely, Rosner (Rosner, Rosner, & 

Johnson, 1995) reported that all patients (n=158) with severe TBI who received intense 

management with a protocol to maintain a CPP > 70 mm Hg achieved favorable outcomes 

(Rosner et al., 1995).   
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A concern arose after CPP targeted therapies resulted in an increased usage of pressors to  

artificially raise the CPP predisposing to possible side effects.   A prospective randomized trial to 

assess this concern was performed by Robertson, et al (Robertson et al., 1999) by comparing the 

effects of a CPP vs. ICP targeted acute care management in 189 adult severe TBI patients.  The 

risk for ischemia, defined by jugular bulb desaturation was decreased by 2.4 fold in the CPP 

targeted group; however, overall neurological outcome was unchanged.  In addition, a 5-fold 

increase in the incidence of acute respiratory distress syndrome (ARDS) was seen in the CPP 

targeted group, cautioning the non-judicious usage of this treatment.   Additional studies have 

since been performed lending evidence that autoregulation determines the effectiveness of CPP 

directed therapy.  A prospective study by Howells, et al (Howells et al., 2005) of 131 severe TBI 

patients receiving CPP directed therapy resulted in improved neurological outcome only if intact 

regulation was present.  Improved neurological outcome in those receiving ICP directed therapy 

was increased if defective autoregulation was seen (Howells et al., 2005).  Individualized therapy 

is emerging as a means of improving outcomes in defined subsets of patients.   

These and other studies have demonstrated the adverse effects of cerebral ischemia in the 

acute period after severe TBI (Gopinath et al., 1994; Muizelaar & Schroder, 1994; Rosner et al., 

1995); however the target ‘ischemic’ level may be different for individual patients, and care must 

be taken not to generalize all TBI patients within the same treatment parameters.  Additional 

monitoring parameters, such as PbtO2, may assist in individualized patient directed care. 
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2.4 NORMOBARIC HYPEROXIA IN TBI 

With the introduction of the Licox® probe, it became possible to measure regional brain tissue 

oxygenation and titrate FiO2 to achieve the desired values.  The probe is commonly inserted in 

the uninjured white matter of the brain following clinical confirmation of severe TBI and PbtO2 

is continuously monitored generally for the first 5 days after injury.  In individuals with severe 

TBI, the normal range for PbtO2 has been reported to be 25-30 torr (Maas, Fleckenstein, de Jong, 

& van Santbrink, 1993).  A threshold value for survival after TBI was reported to be 5 torr (Maas 

et al., 1993).  In a study that examined PbtO2 values and outcome, a pattern emerged of poor 

outcomes antecedent with lower PbtO2 values (Doppenberg, Zauner, Watson, & Bullock, 1998).  

In this study, a PbtO2 of ≤19 torr was associated with poor outcome.  In a pivotal study by 

Valadka (Valadka, Gopinath et al., 1998), 43 severe TBI patients had PbtO2 monitoring for an 

average of 85 ± 41.8 hours.  The subsequent PbtO2 data was examined for an ischemic threshold 

that resulted in death within 3 months after injury.  The data suggested that the longer a patient’s 

PbtO2 values are <15 torr, the greater the likelihood for death, with a critical threshold value of 6 

torr (Valadka, Gopinath et al., 1998).  The ischemic threshold of < 20 torr was established as a 

suggestion based mainly as a result of the above described work of Valadka (Valadka, Goodman, 

Gopinath, Uzura, & Robertson, 1998; Valadka, Gopinath et al., 1998).   Many institutions, such 

as the University of Pittsburgh, treat low or falling values to maintain a PbtO2 > 20 torr, avoiding 

periods of PbtO2 < 15 torr. 

To avoid low PbtO2 values, a common practice in the NTICU is to utilize normobaric 

hyperoxia to increase the amount of dissolved oxygen in plasma to hopefully diffuse to the 

injured tissue.  Although the dissolved oxygen in plasma contributes minimally (2-3%) to the 

total arterial oxygen content (PaO2), it is the driving force to move oxygen to tissues.  After a 
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TBI, the injured brain has been shown to display areas of variable blood flow, glucose utilization 

and edema.  Although a normal PaO2 may be observed, a low PbtO2 may also be present.  

Cerebral blood volume (CBV) may increase to ‘rescue’ this edematous site by delivering 

increased substrate (oxygen and glucose), thus detrimentally increasing ICP to the rest of the 

brain.  By increasing the oxygen content of the cerebral blood flow (by increasing the FiO2), 

more substrate will ultimately be delivered to the injured sites, with a subsequent decrease in 

CBV demand (if CBF autoregulation is intact), and thus a decrease in ICP.   Clinical evidence 

for this physiological theory are minimal and conflicting, as shown by the following studies 

interested in determining if changes in PbtO2 are translated into improvements in CPP.  In a 

study by Kiening that enrolled 23 head-injured patients, an increase of CPP from 32 +/- 2 to 67 

+/- 4 mmHg significantly improved PbtO2 by 62% (13 +/- 2 to 21 +/- 1 mmHg) (Kiening et al., 

1997).  In a similar study, with a sample of 7 severe TBI patients, it was observed that when CPP 

was < 60 mm Hg, PbtO2 decreased (Bruzzone, Dionigi, Bellinzona, Imberti, & Stocchetti, 1998).  

In contrast, in a study of 9 patients (7 subarachnoid hemorrhage, 1 meningeoma, and one severe 

TBI) there was no effect on PbtO2 when CPP was increased to > 60 mm Hg (Stocchetti et al., 

1998).  This may suggest that a change is observed in response to an increase in CPP only if the 

minimal oxygenation threshold is not met or that CBF autoregulation may have been variably 

affected by TBI in these patients.   

Several additional studies have examined the effect of normobaric hyperoxia on 

biochemical markers of injury.  In an experimental study (Singhal, Wang, Sumii, Mori, & Lo, 

2002), rats were randomized to receive hyperoxia (FiO2=1.0) or normoxia (FiO2 =.30), using a 2-

hour filament occlusion and 1-hour reperfusion of the middle cerebral artery.  Histological 

studies examining the infarct volumes at 24 hours after injury showed 70% (total) and 92% 
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(cortical) reduction in the hyperoxia group, compared to the normoxia group.  In addition, levels 

of oxidative stress were evaluated using three indirect methods. Evan's blue dye extravasation 

was quantified to assess blood-brain barrier damage.  Heme oxygenase-1 (HO-1), a heat shock 

protein inducible by oxidative stress, was assessed using Western blot techniques. Levels of 

protein carbonyl formation were assessed by immunoblot technique. No differences were found 

between the hyperoxia and normoxia groups. These results provided evidence, in an animal 

model, that hyperoxia treatment during focal cerebral ischemia-reperfusion may be 

neuroprotective, and does not increase oxidative stress. 

In the clinical setting, Menzel et al (Menzel et al., 1999) conducted a study that examined 

the effect of normobaric hyperoxia on physiological measures of ischemia, and extracellular 

markers of substrate delivery, namely lactate and glucose in 14 head-injured patients (Menzel et 

al., 1999).   In this study, the FiO2 was changed from .35 to .60 and then 1.0 over a 6 hour period, 

during the initial 24 hours after injury.  Hyperoxia did not have an effect on CPP, ICP or 

extracellular glucose levels.  However lactate, a biochemical marker of anaerobic metabolism, 

decreased by 40%.  Increased lactate has been shown to be a measure of anerobic metabolism 

and is associated with poor outcome (DeSalles et al., 1986).  A superior choice of biomarkers to 

assess anaerobic metabolism would have been the lactate/pyruvate ratio which is impervious to 

the dilutional effects of edema, and more evident of changes in the lactate and pyruvate 

disequilibrium (Persson & Hillered, 1992).  Three-month neurological outcome was compared to 

the oxygen reactivity (increase in PbtO2), with those patients exhibiting a lower response having 

more favorable outcomes than those with higher oxygen reactivity (0.4 ± 0.2 versus 0.9 ± 0.6,  

p<.02).  These reactivity changes are small, although apparently significant to outcome, and 
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provide evidence that this normobaric hyperoxia treatment was safe when used in the acute 

period in the adult TBI population.   

In a similar study, Magnoni et al (Magnoni et al., 2003) altered the FiO2 (3 hours at 1.0) 

in eight patients with severe TBI with subsequent measurement of lactate, pyruvate, 

lactate/pyruvate ratio and extracellular glucose levels.  There was a significant decrease in both 

lactate (p < 0.01) and pyruvate (p < 0.05); however, there was no change in either the 

lactate/pyruvate ratio or glucose levels, providing evidence that the treatment did not improve or 

worsen aerobic metabolism at the cellular level (Magnoni et al., 2003).  Both of these studies 

assessed the effect of hyperoxia treatment during periods of normal oxygen availability.  

Biochemical changes may only occur when an ischemic threshold is met or approached.  An 

experimental study in a model of focal ischemia in rats using hyperoxia treatment during the 

ischemic-reperfusion period attenuated neurological deficits at 24 hours post-injury and 

histological damage 14 days post-injury (Flynn & Auer, 2002).  

A collaborative study between two well-known trauma centers specializing in the care of 

TBI patients (Medical College of Virginia and University of Bern, Switzerland), prospectively 

examined the effect of early normobaric hyperoxia (1.0 FiO2 within 6 hours of admission, for a 

duration of 24 hours) on extracellular biomarkers of cerebral metabolism and neurological 

outcome (Tolias et al., 2004).  Fifty-two patients treated in this fashion were compared to 112 

historical controls matched by initial GCS score and ICP in the initial 8 hours after admission.  

Glucose extracellular levels increased (p = 0.001) in the FiO2=1.0 group; however, glutamate 

and lactate significantly decreased (p < 0.005).  ICP in the treatment group was significantly 

lower also (12.13 ± 0.75 mm Hg vs 15.03 ± 0.8 mm Hg, p < 0.005).  Three and six month 

neurological outcome between the groups was not significantly different.  This study provides 
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encouraging safety data for the usage of normobaric hyperoxia after severe TBI population.  

Biochemical markers of brain metabolism improved with normobaric hyperoxia treatment.  ICP, 

although significant between groups, was not outside the normal range for either group, and 

outcome measurements were not significant between groups. 

In summary, although there are compelling physiologic rationale for the potential benefits 

of  normobaric hyperoxia as a treatment to improve brain oxygenation (PbtO2), there is minimal 

empirical evidence for its usage with only a small number of studies that have attempted to 

measure the effects of this therapy.  There are no clinical studies to date that have assessed the 

impact of this treatment on biomarkers of oxidative stress. 

2.5 OXIDATIVE INJURY IN THE BRAIN 

Medical therapy, such as that involved in using PbtO2 monitoring to ensure a target value, 

involves the administration of high concentrations of oxygen.  Excessive administration of 

oxygen can result in tissue damage as the result of the formation of reactive oxygen 

intermediates and peroxidation of membrane lipids.  There are two categories of the negative 

effects of excessive oxygen therapy:  direct toxicity by highly reactive free radicals, the cause of 

bronchopulmonary dysplasia, and indirect toxicity from a maladaptive physiologic response to 

oxygen (i.e. retinopathy).  Premature infants are particularly sensitive to these effects, as a result 

of their greatly impaired antioxidant defenses (Weinberger, Laskin, Heck, & Laskin, 2002).  In 

the adult, oxygen toxicity is manifested as acute respiratory distress syndrome (ARDS), and the 

relationship between increases in FiO2 and oxidative stress in the lung is firmly established 

(Gutteridge & Halliwell, 2000).  In the normal brain, large increases in tissue oxygenation, as 
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with hyperbaric oxygen, can provoke brain injury and seizures (Huang et al., 2000; Kleen & 

Messmer, 1999).  However, it is unclear if high oxygen concentrations cause the same type of 

damage in brain as that seen with ARDS patients and premature infants. 

In the normal brain, there is a high rate of oxidative metabolic activity that mandates the 

need for high levels of antioxidants.  Dysregulation of these processes, as in trauma, presents a 

potential detrimental release of oxidants, with a corresponding disruption in the antioxidant 

properties.  Antioxidants within the brain are classified into two groups:  enzymes and low 

molecular weight antioxidants (LMWA).  Several different enzymes have been shown to protect 

the brain during ischemic injury, such as superoxide dismutase (SOD) (Chan, 1996; Watson, 

1993).  LMWA’s, such as ascorbic acid, are also extremely instrumental in minimizing oxidative 

stress.  As with failed N-methyl-D-aspartate (NMDA) receptor blockade in clinical trials (to 

minimize glutamate toxicity), many efforts to provide therapeutic attempts to scavenge free 

radicals have proven unsuccessful in human TBI (Marshall et al., 1998; Marshall & Marshall, 

1995), although successful in experimental animal models (Hall, 1987; Young, Wojak, & 

DeCrescito, 1988; Zuccarello, Marsch, Schmitt, Woodward, & Anderson, 1989).  These findings 

suggest that there may be a combination of biochemical cascades that are negatively affected by 

the pathophysiology of TBI.  This combination may include oxidative stress and free radical 

formation. 

Reactive oxygen species produced during normal metabolism are involved in enzymatic 

reactions, mitochondrial electron transport, signal transduction, activation of nuclear 

transcription factors, gene expression and the antimicrobial action of neutrophils and 

macrophages (Bayir, 2005; Halliwell, 1989).  The accumulation of free radicals is prevented by 

an active reducing environment which is maintained by antioxidant enzymes and substances, 
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such as glutathione. Oxidative stress and subsequent oxidative injury will occur in an 

environment of altered redox state or depletion of antioxidants (Halliwell, 1992).  Lipid 

membranes are the most sensitive to free radical accumulation and, as such, are an early 

indicator of oxidative damage.  F2-isoprostane is a measurement of lipid peroxidation.  Protein 

damage may also result from free radical damage, with the release of thiol groups (Levine, 

1985).  An decrease in protein sulfhydryls is an indication of protein oxidation.  Disruption of the 

antioxidant processes can be assessed by measurements of the antioxidant enzyme glutathione 

and the total antioxidant reserve (Bayir et al., 2002; Tyurin et al., 2000). By measuring changes 

in markers of oxidative stress, e.g., F2-isoprostane and protein sulfhydryls, and antioxidant 

defenses, e.g., glutathione and total antioxidant reserve, in relation to a FiO2 challenge, it will be 

possible to gain further insight into the biochemical consequences of normobaric hyperoxia in 

the acute period following a severe TBI.    

Oxidative stress has been assessed in both the pediatric (Bayir et al., 2002) and adult 

population (Bayir et al., 2004; Wagner et al., 2004) of severe TBI patients in studies at the 

University of Pittsburgh.  87 cerebrospinal samples from 11 children with severe TBI were 

compared to 8 controls for markers of antioxidant reserve and oxidative stress (Bayir et al., 

2002).  A biochemical marker of oxidative stress, F2-isoprostane was significantly increased 

compared to controls (p < .05).  In addition, antioxidant defenses, total antioxidant reserve and 

glutathione levels, were decreased after day 1 (p < .05).  This study was the first comprehensive 

study examining an impressive battery of oxidative stress and antioxidant reserve in clinical TBI.  

Even with a small sample size, significant differences were found in the biochemical markers 

assessed.   
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A similar study assessed the relationship between markers of oxidative stress and 

antioxidant defenses and gender, age and therapeutic hypothermia in 199 cerebrospinal samples 

from 68 adult TBI patients (Bayir et al., 2004).  A significant gender effect was found (p < 

0.018) with females exhibiting a 2-fold higher level of F2 isoprostane, providing evidence that 

female hormones may provide a neuroprotective effect against oxidative stress.  F2 isoprostane 

was also significantly associated with the presence of hypoxemia (p = .04).  This suggests the 

possibility that toxicity from hyperoxia could be greater in males. 

The above two studies are evidence that a comprehensive battery of biochemical markers 

of oxidative stress and antioxidant reserve are readily assessed at the University of Pittsburgh 

and provide very robust results even in small sample sets.   
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3.0  METHODS 

3.1 DESIGN 

A test-retest repeated measures design was utilized to assess the relationship between a 

normobaric hyperoxia challenge (100% oxygen administered for 2 hours) and measurements of 

key physiologic values and biochemical markers of oxidative stress and antioxidant defenses in 

11 adult patients who have experienced a severe TBI.  Physiologic measures (PbtO2, MAP, CPP, 

ICP) and biochemical markers of oxidative stress (F2-isoprostane, protein sulfhydryls) and 

antioxidant defenses (glutathione, total antioxidant reserve) were measured before, during (2 

hours after induction of the FiO2 challenge, and after (2 hours following) FiO2 challenge.  

Demographic data (age, initial GCS, and gender) were obtained to describe the sample and 

identify possible confounding variables.  Each patient served as their own control. 

3.2 SAMPLE AND SETTING 

Subjects were 11 patients with severe TBI admitted to a Level 1 trauma center located in a 

tertiary care institution.  Based on data from the institution, approximately 55-60 patients with 

TBI were admitted and treated per year.  Inclusion criteria for this study were: 

1. Age 16-45 
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2. Initial Glasgow Coma Scale (GCS) score of ≤ 8, without the influence of 

pharmacologic agents, alcohol, or seizure activity 

3. Positive computed tomography (CT) scan for TBI 

4. Placement of extraventricular drain (EVD) per standard of care ICP monitoring 

and CSF drainage and sampling 

5. Placement of PbtO2 probe (Licox®, Integra Neurosciences™) per standard of care 

PbtO2 monitoring 

6. Signed written consent from next-of-kin for the IRB approved protocol 

7. FiO2 ≤ 0.6 or PaO2/FiO2 ratio ≥ 200 

 

Exclusion criteria were: 

1. Age or GCS other than above 

2. Family unavailable for written consent 

3. Inability to place EVD or PbtO2 probes 

4. Need for FiO2 > 0.6 or PaO2/FiO2 ratio < 200 

5. Enrollment in any other research interventional trial 

 

Patients who required a FiO2 > 0.6 or who have a PaO2/FiO2 ratio of < 200 were excluded to 

increase the likelihood of detecting a difference in oxidative measures and avoid patients who 

have an increased risk of pulmonary complications.  The upper age range was set at 45 years to 

avoid enrolling older patients who may have unreported lung disease.  Children less than 16 

years of age were not enrolled due to the increased risk of hyperoxia on the immature brain and 

because of the difference in brain recovery in adults and children. 
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3.3 STANDARD MEDICAL CARE 

All patients enrolled in this study received standard medical care (Table 1).  The standardization 

of clinical care from pre-hospital to emergency room triage to acute NTICU care to rehabilitative 

care has been refined to minimize individualized physician ideologies. The Guidelines for 

Management of Severe Traumatic Brain Injury (produced by the Brain Trauma Foundation and 

endorsed by the American Association of Neurological Surgeons) were used as the basis for pre-

hospital and critical care of these patients ("Guidelines for the management of severe traumatic 

brain injury," 2007). 
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Table 1:  NTICU Management for Severe TBI Patients 

 

Initial evaluation, triage by certified paramedics  
Pre-intubation GCS whenever possible 
Early intubation for all patients with GCS ≤8 due to head injury 
Use of short or intermediate acting paralytic agents 
Restricted use of hyperventilation therapy 

Pre-hospital 
Management: 

Early (pre-hospital) notification of neurosurgery 
Emergency 
Department 
Management: 

Advanced Trauma Life Support Protocol: rapid restoration of normal blood pressure, 
oxygenation 

 
 

Determination of post-resuscitation GCS prior to the administration of sedating or paralytic 
medications 

 
 

CT of head immediately after hemodynamic and pulmonary resuscitation, or if patient requires 
emergent chest or abdominal surgery, CT of head post-surgery 

ICU 
Management 

 

ICP monitoring with ventriculostomy Physiological 
Monitoring: Continuous blood pressure monitoring via indwelling arterial catheter 

 Central venous catheter for monitoring intravascular volume  and maintenance of 
normothermia (36.5oC) 

 Licox® catheter inserted for monitoring of brain tissue oxygenation (PbtO2) and  temperature 
 Rectal temperature probe for monitoring core body temperature 

Baseline Physiological Parameters: 
 ICP < 20 mm Hg 
 Mean arterial pressure >90 mm Hg 
 Cerebral perfusion pressure >60 mm Hg 
 Central venous pressure 8-15 cm H2O 
 PbtO2 > 20 mm Hg 
 Arterial pCO2 33-37 mm Hg 
 Hematocrit >28% 
 CT scan within 24 hours with CT perfusion (contraindicated with iodine allergy)    

Management of Elevated Intracranial Pressure – A “Stepwise” Approach: 
 Systemic pharmacological paralysis and sedation 
 Intermittent CSF drainage 
 Bolus Mannitol/Lasix therapy or 3% hypertonic saline therapy 
 Reduce arterial pCO2 to 30-32 mm Hg 
 Decompressive temporal lobectomy and/or hemicraniectomy in select patients   
 
 

Pentobarbital coma 600-1000 grams loading dose, 60 mg/hour drip titrated for ICP control and  
cardiac suppression 

Management of Hypotension – A “Stepwise” Approach: 
 If initial CVP is < 5 mmHg and/or systolic blood pressure is < 90 mmHg: 
 Albumin 5% - 500 ml IV bolus, may repeat x 1 
 Normal saline solution – 1000 ml IV bolus, may repeat x 1 
 Refer to severe head injury fluid resuscitation protocol guidelines 
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At the scene, both ground and air emergency medical personnel were educated to perform 

rapid and precise care of all severe TBI patients with the goal of stabilization and immediate 

transfer to a Level 1 trauma hospital.  This involved pre-intubation assessment of severity of 

injury (GCS), early intubation, restricted use of hyperventilation to ensure proper oxygenation 

and blood flow, and selection of short or intermediate acting paralytic agents to be able to 

quickly re-examine the neurological status.   

Once severity of injury was confirmed in the emergency room department by a trained 

neurotrauma resident with consultation with the attending neurosurgeon and clinical nurse 

coordinator, the patient was transferred to the NTICU, with standing orders.  All standing orders 

were focused on the minimization or prevention of secondary injury occurring within this acute 

recovery period, with an emphasis on oxygenation and blood flow. 

A physiatrist evaluated all patients within 24 hours of admission and a comprehensive 

program of physical and occupational therapy as appropriate was initiated.  The management of 

all aspects of the patient’s trauma care was coordinated through daily rounds with the 

neurosurgeon, trauma surgeons, critical care intensivist, physiatrists and the clinical nurse 

coordinator. 

3.4 MEASUREMENT OF STUDY VARIABLES 

3.4.1 Measurement of PbtO2 

Licox® (Integra Neurosciences™, Plainsboro, NJ) brain oxygenation probes were placed as 

standard management for all severe TBI patients to monitor the partial pressure of white matter 
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brain tissue oxygenation.   The system consists of a probe, introducer and sensor. The PbtO2 

sensor is a closed polygraphic cell located at the tip of the completely closed polyethylene 

catheter body.  The sensor samples a sensitive area concentrically around the tip (13 mm2).  It 

consists of 2 polarographic electrodes within a polyethylene tube, bathed in a buffered solution 

with a pH of 7.4.  (Figure 4).  These electrodes are manufactured with one made of silver and 

one of gold that are connected to the electrical contact pins in the connector housing.  Once 

placed, the connectors are attached to the monitor for continuous recordings (Figure 5). 

 

Figure 4:  Illustration of an individual sensor (temperature or oxygen) that is placed within the 3-

port Licox® system. 
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Figure 5:  Illustration of a Licox® monitor.  The front ports connect to the patient’s inserted 

catheters, and the back ports download the continuous data to the patient data monitor. 

 

The accuracy of PbtO2 measurements is dependent on temperature, with every 1oC 

change, a 4% oxygenation sensitivity change occurs.  In order to accurately measure PbtO2, the 

brain tissue temperature is measured continuously and concurrently with the PbtO2 to adjust for 

changes in brain temperature.  The value of the data obtained is ultimately dependent on the site 

of placement within the brain. 

The introducer of the Licox® has three ports that are labeled according to the probe that it 

houses: the oxygenation (PbtO2) probe, the temperature probe, and a middle port that may be 

used for a parenchymal pressure probe, or closed if another monitoring device is used for ICP 

readings, such as in this study with the use of a separate ventriculostomy.  The system 

incorporates a bolt that is secured to the skull in a drilled hole. The introducer is securely 

screwed into the bolt after all probes are inserted (Figure 6). 
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Figure 6:  Illustration of Licox® insertion into the white matter of the brain to sample brain tissue 

oxygenation.  Also shown is the ventriculostomy inserted within the lateral ventricle to drain CSF and for 

CSF sample collection. 

 

The Licox® oxygen probe (diameter 0.8 mm, length 460 mm, oxygen sensitive area of 13 

mm2) is inserted within the bolt system to a fixed approximate depth of 35 mm below the dura 

into the brain parenchyma contralateral to the primary site of injury.   Calibration for the oxygen 

and temperature sensors is performed by the company prior to shipping, and a ‘smart card’ 

calibration is provided with each catheter set.  The catheters cannot be used without the matching 

‘smart card’. 

Insertional Trauma.  The tissue that is affected surrounding the probe is reported to be a 

thickness of 70 μm to 500 μm.  Local microtrauma can occur with insertion, with up to a 20% 

risk (unpublished data, University of Pittsburgh).  Tissue lacking oxidative metabolism does not 

provide oxygen readings; therefore, only viable tissue will provide PbtO2 values.  Values 
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obtained 2 hours immediately after insertion are deemed unreliable due to insertional trauma 

artifact (Valadka, Gopinath et al., 1998; van Santbrink et al., 2003).   

Accuracy.  Integra Neurosciences™ reported the following accuracy rates determined at 

continuous PbtO2 measurement at 37oC:  0-20 mm Hg:  +/- 2 mm Hg;  20-50 mm Hg:  +/- 10%; 

and 50-150 mm Hg:  +/- 12%.  The recommended duration of use is 5 days as accuracy 

diminishes with length of probe use. 

Care to Ensure Proper Functioning. The neurotrauma residents, the research nurse and 

the patient’s primary nurse were trained in troubleshooting problems with the Licox® catheter 

system. In addition to continuous monitoring, the primary nurse entered the PbtO2 and 

temperature data into the bedside electronic flow-sheet.  If the PbtO2 was below 20 torr, the 

attending physician was notified.  After an equilibration time of 1 hour, the catheter was tested 

for responsivity by increasing the FiO2 to 100% for 5 minutes.  The corresponding increase in 

PbtO2 values should occur within that time frame if the catheter was placed within a viable area 

of tissue.   

Care to Minimize Infection. To minimize the risk of infection, the probes were placed 

under sterile conditions in the emergency department, operating room or NTICU, and the 

duration of monitoring was limited to five days. 

3.4.2 Measurement of Additional Physiological and Ventilatory Variables 

FiO2:  All eligible patients were intubated and managed on a ventilator secondary to the severity 

of the brain injury, with the goal of ventilatory management being the maintenance of PaO2 

saturation > 94%.  Following baseline assessment and sample collection, the FiO2 was changed 
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from baseline to 1.0 for the 2 hour testing period.  PaO2 was measured before, during and after-

FiO2 challenge to ensure that the oxygen supply was increased. 

CPP was measured as the difference between MAP and ICP.  This number was 

automatically calculated from data acquired from the patient monitor. 

ICP was continuously monitored in all eligible patients due to the severity of the TBI.  

An EVD was placed by the neurotrauma resident within the first 24 hours of injury.  In the 

majority of subjects, the EVD was placed under sterile conditions at the bedside in the NTICU.  

In some instances, the EVD was placed in the emergency room or the operating room.  The 

target for placement was the lateral ventricle, confirmed by drainage of CSF and a computed 

tomography (CT) scan within 24 hours of placement.  The target ICP was < 20 mm Hg.  

Continuous pressure readings were obtained by connecting the system to the bedside monitor.  A 

waveform was displayed with a digital value that was downloaded every minute.  

MAP was calculated as [2 (diastolic blood pressure) + systolic blood pressure]/3.  MAP 

was continuously monitored in all eligible patients due to the severity of the TBI.  A radial 

arterial line was placed by the critical care intensivist within 24 hours of injury.  Continuous 

pressure readings were obtained by connecting the system to the bedside monitor.  A waveform 

was displayed with a digital value that was downloaded every minute.  Target MAP was > 90 

mm Hg.  MAP was collected for confirmation of the calculation of CPP values. 

3.4.3 Measurement of Oxidative Stress Markers 

F2-isoprostane was measured in CSF samples by a commercially available enzyme 

immunoassay kit (Cayman Chemical, Ann Arbor, MI) with a detection limit of 2 pg/ml. To 

control for the presence of F2-isoprostane in normal conditions, each patient acted as their own 
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control since normal baseline values and values after TBI are highly variable.  If samples were 

not stored properly, oxidation could continue after the sample was taken, thus artificially 

elevating the values.  Caution was taken to properly store these samples at –80oC as soon as the 

patient’s study was completed.  In addition, two sets of standards were run along with the assay 

of tests samples:  one set in standard buffer, and one with CSF-spiked with known amounts of 

F2-isoprostane. 

Protein sulfhydryls were measured in CSF samples using a maleimide reagent, ThioGlo-1 

(Convalent Associates, Inc., Woburn, MA), that produced a fluorescent product upon reaction 

with sulfhydryl groups (Langmuir et al., 1996).  Levels of protein sulfhydryls were determined 

after adding 4 mM SDS to the CSF sample.  A Cytoflur 2350 fluorescence plate reader 

(Millipore Corporation, Marlborough, MA) was used to detect fluorescence using an excitation 

wavelength of 388 nm and an emission wavelength of 500 nm. This data were exported from the 

spectrophotometer using Cytoflur software. 

3.4.4 Measurement of Antioxidant Defenses 

Glutathione levels were measured in CSF utilizing the assay described under protein sulfhydryl 

measurement.  GSH content was estimated by the immediate fluorescent response observed upon 

addition of ThioGlo-1 to the CSF sample.  The response was compared to a standard curve 

obtained by the addition of known amounts of GSH (.04- 4 µM) to 50 mM disodium phosphate 

buffer (pH 7.4) containing 10 µM ThioGlo-1, to extrapolate sample values. 

 Total Antioxidant Reserve (AOR) was measured in CSF samples by a chemiluminescense 

assay produced in the presence of luminol and a source of peroxyl radicals, previously described 

by Tyurina, et al (Tyurina et al., 1995).  For this assay, a water-soluble azo-initiator, AAPH, was 
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used to produce peroxyl radicals at a constant rate.  Based on the known rate of peroxyl radical 

generation by AAPH, the amount of these radicals scavenged by endogenous antioxidants with 

the sample being assayed, CSF levels were determined.  A Microlite ML 1000 microtiter plate 

luminometer (Dynatech Labs, Chantily, VA) was used for the final determinations of these 

amounts. 

3.5 RESEARCH PROCEDURES 

1. Recruitment and Informed Consent. This project was approved by the University of 

Pittsburgh Internal Review Board (IRB) under protocol #0407147 (Appendix A).  All 

potential subjects were unable to sign informed consent, therefore proxy consent was 

required. The patient’s next-of-kin was identified by the emergency room social worker.  

These family members were approached initially by the attending neurosurgeon or the 

resident-on-call, made aware of their loved one’s health status and briefed on the research 

study.  If potential subject’s next-of-kin wishes for more information, the investigator 

further explained the study and obtained written consent. 

2.  Subject confidentiality was a concern and the following measures were taken to prevent 

identity disclosure.  CSF samples collected were aliquotted and coded with a unique 

identifying number, different from the patient’s medical record number or social security 

number.   All study data were coded with the same unique identifying number in order 

for these to be matched to the samples.  The demographic information of the patient was 

stored on a password protected computer in a locked office.  All signed consents were 

stored in a locked filing cabinet in a locked office. 
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3. Extraventricular drain and Licox® probes were placed as standard management as soon as 

severe TBI diagnosis was verified.  The FiO2 challenge was performed within 24-48 

hours of injury, to minimize initial confounding values related to the primary injury; > 8 

hours of Licox insertion to minimize confounding values related to possible insertional 

trauma and > 2 hours from any ventilator setting change. 

4. A baseline arterial blood gas was taken to ensure that proper oxygenation was occurring 

(PaO2 > 90 mm Hg) and to correlate with the initial PbtO2 value.   

5. The initial FiO2 value was recorded. 

6. Baseline physiological data (PbtO2, CPP, ICP and MAP) were recorded every 10 minutes 

through the study period [before, during (2 hours of increased FiO2 treatment) and after 

(2 hours post-FiO2 treatment)].  In addition, minute data were acquired from the patient 

monitor and 30 minute averages were matched to the CSF sample for each time point. 

7. A sterile CSF ventricular sample was drawn (3cc) per NTICU policy, centrifuged, 

aliquoted and transferred to a –80OC freezer for future batch analysis.   

8. The FiO2 was increased to 1.0 for 2 hours.  During this 2 hour period, the investigator 

monitored the subject for physiological changes (ICP, MAP, CPP, PbtO2) and nursing 

activity (turning, suctioning, etc) that might influence the data.  All efforts were taken to 

minimize or delay unnecessary nursing activity. 

9. After 2 hours, a second CSF and arterial blood sample were taken (‘during’ sample), and 

the FiO2 was returned to baseline.   

10. Two hours after the study was completed, a third corresponding CSF and arterial blood 

sample was taken (‘after’ sample) to ensure that no long term effects have occurred.   

 43 



11. Each CSF sample was date and time stamped.  The CSF samples were centrifuged and 

then aliquoted and transferred to cryoprotectant tubes and stored at –80oC for later 

analysis.  Samples were labeled with a unique identifying number to maintain patient 

confidentiality.  

12. Processing of samples for oxidative stress and antioxidative reserve biomarkers was 

performed on batch samples to optimize the performance of assays and supplies.   

13. Strict sterile technique was used when withdrawing specimens. 

3.6 DATA MANAGEMENT 

All physiological data (PbtO2, CPP, MAP, and ICP) were manually recorded every 10 minutes.  

Time from the patient monitor (Hewlett Packard/Philips Medical Systems, Bothell, WA) at the 

start of the FiO2 intervention was recorded, as well as the return to the baseline setting.  In 

addition, all physiological data acquired by the patient’s monitor were downloaded at a rate of 1 

data point/minute, time and date stamped, and stored within the Brain Trauma Research Center’s 

main database.  Validation checks were performed by the PI to ensure that the observed written 

vital signs are equivalent to the computer generated data.  If the validation was approved, the 

minute data was averaged for the last 30 minutes of the before, during and after intervention time 

(FiO2 challenge) to match the CSF samples. 
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3.7 STATISTICAL ANALYSIS 

Overall Design:  The statistical design was a within subject, repeated measures design using a 

generalized linear model (GLM). Univariate analysis of variance (ANOVA) was utilized to 

assess the relationship between FiO2 increases and physiological parameters, as well as 

biochemical oxidative stress and antioxidant reserve biomarkers.  Descriptive statistics and 

bivariant analyses (both parametric and nonparametric based on the distribution) were used.  All 

data were screened for accuracy of input, missing data and outliers.  All statistical procedures 

were performed using the statistical program SPSS (version 12).  Statistical significance was 

determined by a p value less than 0.05.  Sample size was not based on a power analysis as results 

will be used to provide preliminary data for a larger study. 

Analysis Plan:  For the preliminary analyses, descriptive statistics were performed for all 

variables, including mean, standard deviations and standard error of the mean.  The primary 

statistical analysis consisted of a univariate within subjects ANOVA with one within-subjects 

factor.  The independent variable was the time of normobaric hyperoxia treatment, and the 

outcome measures were physiological variables (PbtO2, ICP, CPP) and biochemical marker 

levels (F2-isoprostane, protein sulfhydryls, glutathione, and antioxidant reserve).   

GLM Univariant Assumptions:  The within-subjects effect was analyzed in GLM with the 

assumption of two conditions being met:  1) equal variances and 2) uncorrelated variables.  

Equal variances are tested by summing the error sums of squares for each of the transformed 

variables.  The resulting variances were homogeneous.  The correlation between the transformed 

scores was tested by summing the sums of squares for the new transformed variables.  Ideally, 

there would be no significant correlation between the transformed scores.  If there was a 

significant correlation, there would have been an overestimate of the strength of the 
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relationships, and a correction factor would be applied.  The Mauchly test of sphericity tested for 

both of these assumptions at the same time.  Although all of the assumptions are met in the 

theoretical models, they are not always met in the clinical environment.  The test can still be 

robust if the assumptions were not significantly violated.  If the assumption of sphericity was not 

met, the Type 1 error rate would have been inflated, and the null hypothesis may have been 

rejected unjustly.  The Huynh-Feldt Epsilon correction formula would have been used in the case 

of the sphericity assumption not being met. 

Covariates for this study were severity of injury, described as initial GCS, and 

demographic characteristics of the population studies, such as age, gender and race.  Statistics 

were limited in the number of variables to be controlled for within the final statistical model due 

to the small sample size. 
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4.0  CHAPTER 4 

The results and discussion of findings from this study are presented below in the format of a 

manuscript submitted to Journal of Neurotrauma.   The entire manuscript follows, beginning 

with the introduction section.  The bibliography is incorporated within the dissertation document 

itself. 

4.1 INTRODUCTION 

The current management of severe traumatic brain injury (TBI) in the acute care setting focuses 

on prevention, early detection and treatment of secondary injury through therapy designed to 

maintain adequate cerebral perfusion and intracranial pressure control ("Guidelines for the 

management of severe traumatic brain injury," 2007).  Recent technological advances allow 

brain tissue oxygenation (PbtO2) to be assessed continuously, providing an in vivo tool that 

allows rapid detection of changes in response to the intrinsic evolution of damage, effect of 

secondary insults and/or application of preventive or reactive therapies.  In patients with severe 

TBI, Valadka, et al. reported that the longer the time a patient experienced a PbtO2 of ≤ 15 torr, 

the greater the likelihood of death.  Additionally, any decrease in PbtO2 to < 6 torr, regardless of 

its duration, was associated with an increased mortality (Valadka, Gopinath et al., 1998).  

Subsequently, various treatment modalities to raise the PbtO2 above these thresholds, such as 
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therapeutic hyperoxia, began to be implemented for patients with severe TBI, albeit with limited 

empirical evidence.  In clinical practice, one approach to managing a low PbtO2 (< 20 torr) is to 

increase the delivered fraction of inspired oxygen (FiO2).  Although effective in increasing 

PbtO2, and presumably oxygen availability in the brain, the impact of hyperoxia on secondary 

injury mechanisms, such as oxidative stress, is not well understood.   

Diffusion of oxygen into injured brain tissue may be limited in the setting of brain edema 

and decreased cerebral blood flow (Hlatky, Valadka, Gopinath, & Robertson, 2008), and thus 

high levels of dissolved oxygen in arterial blood may facilitate oxygen delivery.  In a clinical 

study comparing patients receiving 24 hours of 100% oxygen to historical controls, normobaric 

hyperoxic therapy was shown to decrease lactate levels and the lactate/pyruvate ratio, increase 

glucose levels, decrease intracranial pressure (ICP) and improve outcome.  In a prospective 

clinical study utilizing positron emission tomography (PET), normobaric hyperoxia treatment 

enhanced cerebral metabolism in “at risk” tissue with a complimentary small reduction in the 

lactate/pyruvate ratio, but no global changes were seen (Nortje et al., 2008).   A study comparing 

ICP and  PbtO2 monitoring and treatment, including hyperoxia, vs. ICP monitoring and treatment 

alone, reported a favorable and dramatic improvement in neurological outcomes in the group 

with additional PbtO2 monitoring (Stiefel et al., 2005). 

However, other evidence points to a negative effect of hyperoxia treatment on the injured 

brain.  There exists concern about the use of hyperoxia due to the potential of this therapy to 

elicit an oxidative stress response (Longhi & Stocchetti, 2004).  Kaindl et al reported increased 

neuronal apoptotic death and protein carbonyls in mice subjected to hyperoxia (Kaindl et al., 

2006).  Additional evidence in animal models of ischemia and reperfusion suggests a potential 

powerful, deleterious effect of hyperoxia in early post-ischemic reperfusion of brain (Vereczki et 
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al., 2006), possibly via oxidative post-translational modification and inhibition of the key 

mitochondrial enzyme, pyruvate dehydrogenase by peroxynitrite (Bogaert, Rosenthal, & Fiskum, 

1994).  Similarly, studies in children (Bayir et al., 2002; Wagner et al., 2004) and adults (Bayir et 

al., 2002; Wagner et al., 2004) have shown that, with management strategies, antioxidant 

reserves are markedly depleted and biomarkers of oxidative stress are increased in cerebrospinal 

fluid (CSF) in the acute period after TBI.  Accordingly, a treatment strategy involving the use of 

high concentrations of oxygen to achieve a target PbtO2 could theoretically, place the already 

vulnerable brain at risk for secondary injury.  It is of clinical interest to determine if any harmful 

effects occur with the use of therapeutic normobaric hyperoxia to increase a low or normal PbtO2 

value. 

The purpose of this study was to examine the effect of a brief, controlled period of 

normobaric hyperoxia (100% oxygen administered for 2 hours) on (1) the key physiological 

values of local brain tissue oxygenation (PbtO2), intracranial pressure (ICP), global brain 

perfusion (cerebral perfusion pressure [CPP]) and systemic blood pressure (mean arterial 

pressure [MAP]); and (2) biochemical markers of oxidative stress (as measured by F2-

isoprostane, and protein sulfhydryl) and antioxidant defenses (as measured by reduced 

glutathione and antioxidant reserve) in CSF of patients admitted to a Level 1 trauma center who 

sustained a severe TBI.   
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4.2 MATERIALS AND METHODS 

4.2.1 Subjects 

Under the scope of an approved institutional review board protocol, we prospectively studied 11 

adult patients (18-45 years of age) with severe TBI who were admitted to our Level 1 trauma 

center.  Severe TBI was determined in the emergency room by the attending neurosurgeon using 

the following criteria: 1) post-resuscitative Glasgow Coma Scale (GCS) score ≤ 8, not following 

commands and without the influence of pharmacologic agents, alcohol or paralytics; and 2) 

positive computer tomography (CT) scan for severe TBI diagnosis.  Entry criteria for the study 

were:  1) FiO2 ≤ 0.6 or PaO2/FiO2 ratio > 200; 2) external ventricular drain (EVD); 3) brain 

tissue oxygenation (PbtO2) probe (Licox®, Integra Neurosciences™); 4) informed consent from 

the legal authorized representative; 5) controlled ICP (≤ 25 mm Hg ) and PbtO2 (≥ 15 mm Hg) 

parameters at the time of the FiO2 challenge; and 6) ability to begin data collection within 48 

hours of injury.  Patients who required a FiO2 > 0.6 or had a PaO2/FiO2 ratio of ≤ 200 were 

excluded to maximize the ability to detect a difference between standard therapy and normobaric 

hyperoxia therapy on oxidative measures and to avoid severe impairments in oxygen tension.  In 

addition, patients were excluded if they exhibited prolonged (> 30 minutes) hypotension and 

hypoxia prior to hospital admission, had an unknown injury time, or an injury time > 24 hours 

prior to arrival in the emergency department, or were clinically brain dead. The upper age limit 

was set at 45 years to avoid enrolling older patients with unreported lung disease.  
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4.2.2 Critical Care Management 

Intensive care management was provided within a dedicated neurotrauma intensive care unit 

with care guided by standardized protocols consistent with the Guidelines for Management of 

Severe Traumatic Brain Injury ("Guidelines for the management of severe traumatic brain 

injury," 2007).  All clinical orders are focused on minimization or prevention of secondary injury 

occurring within this acute recovery period, with an emphasis on cerebral oxygenation and blood 

flow.  MAP endpoint goals were between 90-110 mm Hg, PaCO2 between 33-37 mm Hg, central 

venous pressure (CVP) between 8-15 mm Hg; and CPP > 60 mm Hg.  ICP values > 20 mm Hg 

were aggressively managed using a step-wise protocol that included pharmacologic paralysis and 

sedation, continuous CSF drainage, osmotic therapy (bolus mannitol or continuous hypertonic 

saline infusion), transient escalation of hyperventilation and barbiturate infusion.  The PbtO2 

probe (diameter 0.8 mm, length 460 mm, oxygen sensitive area of 13 mm2) was placed 

approximately 35 mm below the dura into the brain parenchyma of the frontal lobe, contralateral 

to the primary site of injury to provide sampling from a normal-appearing site that, consequently, 

should represent an uninjured brain region at risk for secondary injury.  As local microtrauma 

can occur with insertion, and levels of a number of mediators may be increased in CSF during 

the initial period of sampling, a 24-hour interval was allowed between probe insertion and the 

normobaric hyperoxia trial (Valadka, Gopinath et al., 1998; van Santbrink et al., 2003).    
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4.2.3 Normobaric Hyperoxia Trial  

Arterial blood gas (ABG) and sterile CSF ventricular samples were obtained 30 minutes prior to 

the trial and defined as ‘Before  Trial’; immediately after the normobaric hyperoxia trial (FiO2 

increased to 1.0 for 2 hours), representing the period during the trial and defined as  ‘During 

Trial’; and 2 hours following the return to baseline FiO2 settings, representing the period 

following the trial and defined as ‘After Trial’.   Physiological parameters (ICP, MAP, CPP, 

PbtO2) were continuously monitored and data collected every minute via a data acquisition 

server linked to the patient’s monitor (Hewlett Packard/Philips Medical Systems, Bothell, WA).  

The last 30 minutes of data collection prior to each CSF sampling was averaged to provide a 

comparison to the CSF collection interval for each of the three collection points.  During the data 

collection period, nursing activity was minimized and notations were made of any nursing 

activity that might influence the data obtained, e.g., turning, suctioning, etc.  The duration (2 hrs) 

of the normobaric hyperoxia trial was chosen to provide sufficient time to produce changes due 

to oxidative stress to the brain (if present) but not prolonged to cause potential damage if 

biomarkers were markedly changed by the trial. 

4.2.4 CSF Sample and Marker Assays 

To obtain CSF, the EVD was placed in the closed position for 15 minutes and a fresh CSF 

sample obtained via the proximal access port.  All CSF samples were immediately placed on ice, 

centrifuged, transferred to a cryoprotectant tube and stored in a -80oC freezer for future batch 

analysis.   
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F2-isoprostane was measured in CSF by a commercially available enzyme immunoassay 

kit (Cayman Chemical, Ann Arbor, MI) with a detection limit of 2 pg/ml.  Protein sulfhydryls  

were measured in CSF samples using a maleimide reagent, ThioGlo-1 (Convalent Associates, 

Inc., Woburn, MA), that produces a fluorescent product upon reaction with sulfhydryl groups 

(Langmuir et al., 1996).  Levels of protein sulfhydryls were determined after adding 4 mM SDS 

to the CSF sample.  A Cytoflur 2350 fluorescence plate reader (Millipore Corporation, 

Marlborough, MA) was used to detect fluorescence using an excitation wavelength of 388 nm 

and an emission wavelength of 500 nm. Glutathione levels (GSH) measured in CSF utilizing the 

assay described above.  GSH content was estimated by the immediate fluorescent response 

observed upon addition of ThioGlo-1 to the CSF sample.  The response was compared to a 

standard curve obtained by the addition of known amounts of GSH (.04- 4 µM) to 50 mM 

disodium phosphate buffer (pH 7.4) containing 10 µM ThioGlo-1, to extrapolate sample values.  

Total Antioxidant Reserve (AOR) was measured in CSF samples by a chemiluminescense assay 

produced in the presence of luminol and a source of peroxyl radicals, previously described by 

Tyurina, et al (Tyurina et al., 1995).  For this assay, a water-soluble azo-initiator, AAPH, is used 

to produce peroxyl radicals at a constant rate.  Based on the known rate of peroxyl radical 

generation by AAPH, the amount of these radicals scavenged by endogenous antioxidants with 

the sample being assayed, CSF levels were determined.  A Microlite ML 1000 microtiter plate 

luminometer (Dynatech Labs, Chantily, VA) was used for the final determinations of these 

amounts. 
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4.2.5 Statistical Analysis   

Descriptive statistics and bivariant analyses (parametric and nonparametric based on the 

distribution) were used.  Data were screened for accuracy of input, missing data and outliers and 

statistical procedures performed using SPSS (version 12), with a statistical significance 

determined a priori at p < 0.05.  Multivariate analysis of variance (MANOVA) was utilized to 

detect significant changes in physiological variables (PbtO2, MAP, ICP, CPP) and biochemical 

marker levels (F2-isoprostane, protein sulfhydryls, glutathione, and total antioxidant reserve) 

over time.  If significant results were obtained in the MANOVA procedure, appropriate post hoc 

paired Student t-tests were performed.  Significance values were adjusted for multiple 

comparisons according to Bonferroni, if required. 

4.3 RESULTS 

4.3.1 Subject Demographics 

Subjects (9 male, 2 female) were 26 ± 1.8 years of age, 91% Caucasian, with an initial GCS 

score of 6 [3,8] (Table 2).   
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Table 2:  Study Population Characteristics 

Gender, % male 81.8% 

Race, % Caucasian 81.8% 

Age 
  Mean ± SEM 

26 ± 1.8 

GCS on admission 
  Median [range]  

    GCS 3-5 
    GCS 6-8 
 

6 [3,8] 
 

36.4% 
63.6% 

 
Values are mean ± SEM or median [range] where appropriate 
Definition of abbreviations: SEM = standard error of the mean; GCS = Glasgow Coma Scale 
score. 
 
 

4.3.2 Physiological Results 

The initial FiO2 was 0.50 ± 0.09 (range 0.40 - 0.60).  All baseline physiologic parameters were 

within normal ranges.  Compared to baseline, the normobaric hyperoxia challenge increased 

PaO2 (173.1 ± 51.4 to 385.5 ± 108.3 mmHg) and PbtO2 (27.3 ± 7.4 to 93.9 ± 58.1 mm Hg), as 

expected.  The MANOVA demonstrated a significant overall effect for normobaric hyperoxia on 

PaO2 (F = 38.9; d.f. = 2, 18;   p < .0001) and PbtO2 (F = 15.4, d.f. = 2, 20;  p < .0001).   

Normobaric hyperoxia significantly improved PaO2 (t= 7.2; p < .0001) and PbtO2 (t= 4.1; p < 
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.0001) from baseline values, with a corresponding significant decrease in PaO2 (t=-6.0; p < 

.0001) and PbtO2 (t= -3.8; p < .0001) when the ventilatory setting was changed back to the 

baseline FiO2 setting.  No significant resultant changes were seen from before- FiO2 challenge to 

after FiO2 challenge for PaO2 and PbtO2 .  No significant changes were seen in ICP, MAP, or 

CPP (reported in Figure 7).   
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Figure 7:  Effect of normobaric hyperoxia trial on physiological parameters before, during and after 

2 hour normobaric hyperoxia trial.  Definitions of abbreviations: ICP = intracranial pressure; MAP = mean 

arterial pressure; CPP = cerebral perfusion pressure; PbtO2 = brain tissue oxygenation.  Error bars are SEM 

for each parameter.  Note that PaO2 values are not shown, refer to text. 

 

4.3.3 Biomarker Results 

Markers of oxidative stress (F2-isoprostane, and protein sulfhydryls; Figures 8 and 9) and 

antioxidant reserve (glutathione and total AOR; Figures 10 and 11) did not significantly change 
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at any study time points.  Notably, AOR, a sensitive marker of anti-oxidant defenses (Bayir et 

al., 2002), did not demonstrate even a trend toward reduction, and no substantial trends were 

seen for any marker vs baseline measures. 
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Figure 8:  Effect of a normobaric hyperoxia trial on F2 isoprostane levels in CSF.  Individual patients 

depicted by line graph.  Overall F2 isoprostane concentration did not significantly change from before, during 

or after trial. 
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Figure 9:  Effect of a normobaric hyperoxia trial on F2 isoprostane levels in CSF.  Overall F2 

isoprostane concentration did not significantly change from before, during or after trial.  Patients grouped 

and reported in a box plot format (o symbol depicts outlier value; * symbol depicts extreme outlier value). 
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Figure 10:  Effect of a normobaric hyperoxia trial on content of protein sulfydryl concentrations in 

CSF.  Overall concentrations of protein sulfydryls did not significantly change from before, during or after 

trial.  Individual patients depicted by line graph. 
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Figure 11:  Effect of a normobaric hyperoxia trial on content of protein sulfydryl concentrations in 

CSF.  Overall concentrations of protein sulfydryls did not significantly change from before, during or after 

trial.  Patients grouped and reported in a box plot format (* depicts extreme outlier). 
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Figure 12:  Effect of a normobaric hyperoxia trial on glutathione concentrations in CSF.  Overall 

concentrations of glutathione did not significantly change from before, during or after trial.  Individual 

patients depicted by line graph. 
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Figure 13:  Effect of a normobaric hyperoxia trial on glutathione concentrations in CSF.  Overall 

concentrations of glutathione did not significantly change from before, during or after trial.  Patients grouped 

and reported in a box plot format (o symbol depicts outlier value). 
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Figure 14:  Effect of a normobaric hyperoxia trial on total antioxidant reserve concentrations in 

CSF.  CSF was subjected to free radical attack from peroxyl radicals generated from AAPH in the presence 

of a reporter molecule, luminol.  Overall concentrations did not significantly change from before, during or 

after trial.  Individual patients depicted by line graph.   
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Figure 15:  Effect of a normobaric hyperoxia trial on total antioxidant reserve concentrations in 

CSF.  CSF was subjected to free radical attack from peroxyl radicals generated from AAPH in the presence 

of a reporter molecule, luminol.  Overall concentrations did not significantly change from before, during or 

after trial.  Patients grouped and reported in a box plot format. 

 

4.4 DISCUSSION 

This interventional study is an initial examination of the effect of a brief (2 hour) controlled 

period of normobaric hyperoxia on oxidative stress in an adult severe TBI population, similar to 

a setting of ischemia/reperfusion damage.  The present data demonstrates that raising FiO2 

enhanced PbtO2 without apparent risk to a short period of normobaric hyperoxia when measuring 

CSF oxidative stress and antioxidant defense markers.  This clinical study is the first to examine 
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the effect of normobaric hyperoxia on a battery of oxidative stress biomarkers in CSF.   The lack 

of response in the oxidative stress biomarker battery of the present study, in conjunction with the 

previously reported improvement of cerebral metabolism markers of the lactate/pyruvate ratio  

(Nortje et al., 2008; Tolias et al., 2004) lends support that short durations of normobaric 

hyperoxia are potentially safe in this population.   

Although the sample size was small (n=11), we chose a homogenous sample in certain 

aspects to minimize the variability in secondary injury pathways that might cause a concurrent 

increase in oxidative stress biomarkers.  To control for variations in therapy, all patients were 

treated with a strict standard protocol for TBI based on the Guidelines for Management of Severe 

Traumatic Brain Injury ("Guidelines for the management of severe traumatic brain injury," 

2007).  No patients were in crisis situations for ethical considerations, since the use of 

normobaric hyperoxia is controversial.  No patients were experiencing refractory intracranial 

hypertension, low CPP or low PbtO2.   

We have previously shown that severe TBI in children and adults results in the 

compromise of antioxidant defenses and the exacerbation of free radical-mediated lipid 

peroxidation (Bayir et al., 2002; Wagner et al., 2004). The potential of compromised antioxidant 

defenses suggests that an intervention, such as normobaric hyperoxia may place the injured brain 

at increased risk for secondary damage in the acute phase of recovery, as a consequence of 

increased free radical production.  Although this study resulted in no significant changes for 

physiological parameters (CPP, MAP, ICP) or biomarkers for oxidative stress and antioxidant 

reserves, caution must be taken to extrapolate this to the larger TBI population.  The baseline 

values for PbtO2 were 28.5 ± 5.4 mm Hg, and ICP were 14.7 ± 4.9 mm Hg, representing normal 

oxygenation and pressure values.  The resulting non-significant changes in physiology (other 
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than increases in PbtO2) and biomarker analyses that resulted from the FiO2 increase to 1.0 may 

not represent the practice of increasing the FiO2 when the PbtO2 is < 20 mm Hg, or the ICP is > 

20 mm Hg.  We cannot rule out the possibility that under such conditions, normobaric hyperoxia 

may induce oxidative stress, due to the presence of ongoing excitotoxicity, inflammation, 

activation of xanthine oxidase, or other mechanisms known to mediate oxidative stress.  Also, 

the normobaric hyperoxia trial was performed at least 24 hours after PbtO2 probe insertion to 

avoid sampling biomarkers resulting from local microtrauma or the initial trauma insult.   

Normobaric hyperoxia instituted under these early conditions may have an additive effect, with 

proximity to TBI, ischemia or other secondary injury pathways such as excitotoxicity.  Although 

it has been theorized that patients experiencing a low PbtO2 due to low cerebral blood flow in the 

damaged region may benefit the most from normobaric hyperoxia (Hlatky et al., 2008), 

additional studies examining patients with low PbtO2 values and a more extended period of 

treatment are needed to confirm the absence of adverse events.  In addition, because the 

immature brain is known to be at an increased risk for oxidative damage and there are recognized 

differences in pathophysiology and outcomes, these findings need to be confirmed in pediatric 

patients. 

The method of CSF sampling chosen was to examine a global representation of the brain 

under hyperoxia therapy, as opposed to local sampling that microdialysis can offer for specific 

aims such as pericontusional responses.  The injured areas of the brain may respond more or less 

significantly to this treatment and need to be examined. 

The duration of treatment chosen was brief, with the goal of not causing prolonged 

oxidative stress damage if a dramatic effect with treatment was demonstrated.  Because we noted 

a lack of effect, longer exposure periods need to be examined, as well as long-term neurological 
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outcomes.  Some centers use this treatment transiently while others are using this continuously.  

Although a brief period of normobaric hyperoxia was employed in this current study, an 

immediate and drastic increase in PbtO2 occurred, with an average increase of over 200%.  In 

addition, in prior studies, assessment of oxidative stress markers is capable of demonstrable, 

rapid responses, shown by marked increases in F2 isoprostane early after TBI (Bayir et al., 2002; 

Wagner et al., 2004).  The data herein indicate some individual variability exists across subjects 

in response to normobaric hyperoxia treatment; however no substantive trends were observed.  In 

patients having an increase in one variable, there was no consistent increase across other 

measured variables; hence normal physiologic variability is the most likely explanation for our 

findings.  One subject was shown to be an extreme outlier for F2 isoprostane; however, the 

values decreased over time, and did not significantly increase with the normobaric treatment, 

suggesting that some individuals inherently have a high basal level of oxidative stress after TBI. 

Frequently following TBI, with the development of cerebral edema, diffusion of oxygen 

to tissue can be compromised and thus there is a theoretical target for increased oxygen delivery 

via raising the FiO2.  Subsequently, hyperoxia treatment is being used transiently to increase low 

PbtO2 values.  It is also believed that the increase in oxygen delivery to compromised regions 

will produce a compensatory decrease in cerebral blood volume and thus a reduction in 

intracranial pressure via autoregulation.  Although this study did not show an effect of the 

examined physiological variables, sampling during a crisis situation (ie, intracranial 

hypertension, hypoxia, etc) may have produced different results and additional studies are 

needed. 
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4.5 CONCLUSION 

This study is the first to examine prospectively the effect of short periods of normobaric 

hyperoxia on CSF oxidative stress markers.  Short periods of normobaric hyperoxia significantly 

increased PbtO2 but did not significantly change physiological parameters (ICP, CPP, and MAP) 

that may influence neurological outcome or CSF markers of oxidative stress and antioxidant 

reserves in TBI adult patients.  This supports the safety of the application of short periods of 

normobaric hyperoxia after severe TBI in the adult population. 

 68 



APPENDIX A 

University of Pittsburgh 
Institutional Review Board 
3500 Fifth Avenue 
Ground Level 
Pittsburgh, PA 15213 
(412) 383-1480 
(412) 383-1508 (fax) 
MEMORANDUM 
TO: David O. Okonkwo, MD 
FROM: Christopher Ryan, PhD, Vice Chair 
DATE: July 20, 2007 
SUBJECT: IRB #0407147: The Effect of FiO2 Elevation on Local Brain Tissue Oxygenation (PbtO2) 
and Oxidative Stress in Patients with Severe Traumatic Brain Injury 
The renewal with modifications of the above-referenced proposal has received expedited review 
and approval by the Institutional Review Board under 45 CFR 46.110 (8). This protocol is closed 
to accrual and all protocol interventions are complete. 
Approval Date: July 18, 2007 
Renewal Date: July 17, 2008 
Please note that it is the investigator’s responsibility to report to the IRB any unanticipated 
problems involving risks to subjects or others [see 45 CFR 46.103(b)(5) and 21 CFR 56.108(b)]. 
The IRB Reference Manual (Chapter 3, Section 3.3) describes the reporting requirements for 
unanticipated problems which include, but are not limited to, adverse events. If you have any 
questions about this process, please contact the Adverse Event Coordinator at 412-383-1504. 
The protocol and consent forms, along with a brief progress report must be resubmitted at least 
one month prior to the renewal date noted above as required by FWA00006790 (University of 
Pittsburgh), FWA00006735 (University of Pittsburgh Medical Center), FWA00000600 (Children’s 
Hospital of Pittsburgh), FWA00003567 (Magee-Womens Health Corporation), FWA00003338 
(University of Pittsburgh Medical Center Cancer Institute). 
Please be advised that your research study may be audited periodically by the University of 
Pittsburgh Research Conduct and Compliance Office. 
CR:dj 
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