18 research outputs found

    Nuclear Magnetic Resonance metabolomics reveals an excretory metabolic signature of renal cell carcinoma

    Get PDF
    RCC usually develops and progresses asymptomatically and, when detected, it is frequently at advanced stages and metastatic, entailing a dismal prognosis. Therefore, there is an obvious demand for new strategies enabling an earlier diagnosis. The importance of metabolic rearrangements for carcinogenesis unlocked a new approach for cancer research, catalyzing the increased use of metabolomics. The present study aimed the NMR metabolic profiling of RCC in urine samples from a cohort of RCC patients (n = 42) and controls (n = 49). The methodology entailed variable selection of the spectra in tandem with multivariate analysis and validation procedures. The retrieval of a disease signature was preceded by a systematic evaluation of the impacts of subject age, gender, BMI, and smoking habits. The impact of confounders on the urine metabolomics profile of this population is residual compared to that of RCC. A 32-metabolite/resonance signature descriptive of RCC was unveiled, successfully distinguishing RCC patients from controls in principal component analysis. This work demonstrates the value of a systematic metabolomics workflow for the identification of robust urinary metabolic biomarkers of RCC. Future studies should entail the validation of the 32-metabolite/resonance signature found for RCC in independent cohorts, as well as biological validation of the putative hypotheses advanced

    Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

    Get PDF

    Management of adult cardiac arrest in theCOVID-19 era: consensus statement from the Australasian College for Emergency Medicine

    No full text
    INTRODUCTION: The global pandemic of coronavirus disease 2019 (COVID-19) has caused significant worldwide disruption. Although Australia and New Zealand have not been affected as much as some other countries, resuscitation may still pose a risk to health care workers and necessitates a change to our traditional approach. This consensus statement for adult cardiac arrest in the setting of COVID-19 has been produced by the Australasian College for Emergency Medicine (ACEM) and aligns with national and international recommendations. MAIN RECOMMENDATIONS: In a setting of low community transmission, most cardiac arrests are not due to COVID-19. Early defibrillation saves lives and is not considered an aerosol generating procedure. Compression-only cardiopulmonary resuscitation is thought to be a low risk procedure and can be safely initiated with the patient's mouth and nose covered. All other resuscitative procedures are considered aerosol generating and require the use of airborne personal protective equipment (PPE). It is important to balance the appropriateness of resuscitation against the risk of infection. Methods to reduce nosocomial transmission of COVID-19 include a physical barrier such as a towel or mask over the patient's mouth and nose, appropriate use of PPE, minimising the staff involved in resuscitation, and use of mechanical chest compression devices when available. If COVID-19 significantly affects hospital resource availability, the ethics of resource allocation must be considered. CHANGES IN MANAGEMENT: The changes outlined in this document require a significant adaptation for many doctors, nurses and paramedics. It is critically important that all health care workers have regular PPE and advanced life support training, are able to access in situ simulation sessions, and receive extensive debriefing after actual resuscitations. This will ensure safe, timely and effective management of the patients with cardiac arrest in the COVID-19 era
    corecore