33 research outputs found

    Transmission spectroscopy of the ultra-hot Jupiter MASCARA-4 b: Disentangling the hydrostatic and exospheric regimes of ultra-hot Jupiters

    Get PDF
    Ultra-hot Jupiters (UHJs), rendering the hottest planetary atmospheres, offer great opportunities of detailed characterisation with high-resolution spectroscopy. MASCARA-4 b is a recently discovered close-in gas giant belonging to this category. In order to refine system and planet parameters, we carried out radial velocity measurements and transit photometry with the CORALIE spectrograph and EulerCam at the Swiss 1.2m Euler telescope. We observed two transits of MASCARA-4 b with the high-resolution spectrograph ESPRESSO at ESO's Very Large Telescope. We searched for atomic, ionic, and molecular species via individual absorption lines and cross-correlation techniques. These results are compared to literature studies on UHJs characterised to date. With CORALIE and EulerCam observations, we updated the mass of MASCARA-4 b (1.675 +/- 0.241 Jupiter masses) as well as other system and planet parameters. In the transmission spectrum derived from ESPRESSO observations, we resolve excess absorption by Hα\alpha, Hβ\beta, Na D1 & D2, Ca+ H & K, and a few strong individual lines of Mg, Fe and Fe+. We also present the cross-correlation detection of Mg, Ca, Cr, Fe and Fe+. The absorption strength of Fe+ significantly exceeds the prediction from a hydrostatic atmospheric model, as commonly observed in other UHJs. We attribute this to the presence of Fe+ in the exosphere due to hydrodynamic outflows. This is further supported by the positive correlation of absorption strengths of Fe+ with the Hα\alpha line. Comparing transmission signatures of various species in the UHJ population allows us to disentangle the hydrostatic regime (as traced via the absorption by Mg and Fe) from the exospheres (as probed by Hα\alpha and Fe+) of the strongly irradiated atmospheres.Comment: 13 pages, 9 figures, accepted to A&

    An ESPRESSO view of HD 189733 system. Broadband transmission spectrum, differential rotation, and system architecture

    Full text link
    The development of state-of-the-art spectrographs has ushered in a new era in the detection and characterization of exoplanetary systems. Our objective is to utilize the high-resolution and precision capabilities of the ESPRESSO instrument to detect and measure the broad-band transmission spectrum of HD 189733b's atmosphere. Additionally, we aim to employ an improved Rossiter-McLaughlin model to derive properties related to the velocity fields of the stellar surface and to constrain the orbital architecture. Our results demonstrate a high degree of precision in fitting the observed radial velocities during transit using the improved modeling of the Rossiter-McLaughlin effect. We tentatively detect the effect of differential rotation with a confidence level of 93.4%93.4 \% when considering a rotation period within the photometric literature values, and 99.6%99.6\% for a broader range of rotation periods. For the former, the amplitude of differential rotation ratio suggests an equatorial rotation period of 11.45±0.0911.45\pm 0.09 days and a polar period of 14.9±214.9\pm 2. The addition of differential rotation breaks the latitudinal symmetry, enabling us to measure the true spin-orbit angle ψ13.6±6.9 \psi \approx 13.6 \pm 6.9 ^\circ and the stellar inclination axis angle i71.875.55+6.91 i_{\star} \approx 71.87 ^{+6.91^\circ}_{-5.55^\circ}. Moreover, we determine a sub-solar amplitude of the convective blueshift velocity VCBV_{CB} \approx 21161+69-211 ^{+69} _{-61} m\,s1 ^{-1}, which falls within the expected range for a K-dwarf host star and is compatible with both runs. Finally, we successfully retrieved the transmission spectrum of HD 189733b from the high-resolution ESPRESSO data. We observe a significant decrease in radius with increasing wavelength, consistent with the phenomenon of super-Rayleigh scattering

    Analysis of natural variants of the hepatitis C virus internal ribosome entry site reveals that primary sequence plays a key role in cap-independent translation

    Get PDF
    The HCV internal ribosome entry site (IRES) spans a region of ∼340 nt that encompasses most of the 5′ untranslated region (5′UTR) of the viral mRNA and the first 24–40 nt of the core-coding region. To investigate the implication of altering the primary sequence of the 5′UTR on IRES activity, naturally occurring variants of the 5′UTR were isolated from clinical samples and analyzed. The impact of the identified mutations on translation was evaluated in the context of RLuc/FLuc bicistronic RNAs. Results show that depending on their location within the RNA structure, these naturally occurring mutations cause a range of effects on IRES activity. However, mutations within subdomain IIId hinder HCV IRES-mediated translation. In an attempt to explain these data, the dynamic behavior of the subdomain IIId was analyzed by means of molecular dynamics (MD) simulations. Despite the loss of function, MD simulations predicted that mutant G266A/G268U possesses a structure similar to the wt-RNA. This prediction was validated by analyzing the secondary structure of the isolated IIId RNAs by circular dichroism spectroscopy in the presence or absence of Mg2+ ions. These data strongly suggest that the primary sequence of subdomain IIId plays a key role in HCV IRES-mediated translation

    Two long-period transiting exoplanets on eccentric orbits: NGTS-20 b (TOI-5152 b) and TOI-5153 b

    Get PDF
    Long-period transiting planets provide the opportunity to better understand the formation and evolution of planetary systems. Their atmospheric properties remain largely unaltered by tidal or radiative effects of the host star, and their orbital arrangement reflects a different, and less extreme, migrational history compared to close-in objects. The sample of long-period exoplanets with well determined masses and radii is still limited, but a growing number of long-period objects reveal themselves in the TESS data. Our goal is to vet and confirm single transit planet candidates detected in the TESS space-based photometric data through spectroscopic and photometric follow up observations with ground-based instruments. We use the Next Generation Transit Survey (NGTS) to photometrically monitor the candidates in order to observe additional transits. We report the discovery of two massive, warm Jupiter-size planets, one orbiting the F8-type star TOI-5153 and the other orbiting the G1-type star NGTS-20 (=TOI-5152). From our spectroscopic analysis, both stars are metal-rich with a metallicity of 0.12 and 0.15, respectively. Follow-up radial velocity observations were carried out with CORALIE, CHIRON, FEROS, and HARPS. TOI-5153 hosts a 20.33 day period planet with a planetary mass of 3.26 (+-0.18) Mj, a radius of 1.06 (+-0.04) Rj , and an orbital eccentricity of 0.091 (+-0.026). NGTS-20 b is a 2.98 (+-0.16) Mj planet with a radius of 1.07 (+-0.04) Rj on an eccentric (0.432 +- 0.023) orbit with an orbital period of 54.19 days. Both planets are metal-enriched and their heavy element content is in line with the previously reported mass-metallicity relation for gas giants. Both warm Jupiters orbit moderately bright host stars making these objects valuable targets for follow-up studies of the planetary atmosphere and measurement of the spin-orbit angle of the system.Comment: 17 pages, 13 figures, accepted to A&

    Three low-mass companions around aged stars discovered by TESS

    Get PDF
    We report the discovery of three transiting low-mass companions to aged stars: a brown dwarf (TOI-2336b) and two objects near the hydrogen burning mass limit (TOI-1608b and TOI-2521b). These three systems were first identified using data from the Transiting Exoplanet Survey Satellite (TESS). TOI-2336b has a radius of 1.05±0.04 RJ1.05\pm 0.04\ R_J, a mass of 69.9±2.3 MJ69.9\pm 2.3\ M_J and an orbital period of 7.71 days. TOI-1608b has a radius of 1.21±0.06 RJ1.21\pm 0.06\ R_J, a mass of 90.7±3.7 MJ90.7\pm 3.7\ M_J and an orbital period of 2.47 days. TOI-2521b has a radius of 1.01±0.04 RJ1.01\pm 0.04\ R_J, a mass of 77.5±3.3 MJ77.5\pm 3.3\ M_J and an orbital period of 5.56 days. We found all these low-mass companions are inflated. We fitted a relation between radius, mass and incident flux using the sample of known transiting brown dwarfs and low-mass M dwarfs. We found a positive correlation between the flux and the radius for brown dwarfs and for low-mass stars that is weaker than the correlation observed for giant planets.Comment: 20 pages, 13 figures; submitted to MNRA

    TOI-5678 b: A 48-day transiting Neptune-mass planet characterized with CHEOPS and HARPS

    Get PDF
    A large sample of long-period giant planets has been discovered thanks to long-term radial velocity surveys, but only a few dozen of these planets have a precise radius measurement. Transiting gas giants are crucial targets for the study of atmospheric composition across a wide range of equilibrium temperatures and for shedding light on the formation and evolution of planetary systems. Indeed, compared to hot Jupiters, the atmospheric properties and orbital parameters of cooler gas giants are unaltered by intense stellar irradiation and tidal effects. We identify long-period planets in the Transiting Exoplanet Survey Satellite (TESS) data as duo-transit events. To solve the orbital periods of TESS duo-transit candidates, we use the CHaracterising ExOPlanet Satellite (CHEOPS) to observe the highest-probability period aliases in order to discard or confirm a transit event at a given period. We also collect spectroscopic observations with CORALIE and HARPS in order to confirm the planetary nature and measure the mass of the candidates. We report the discovery of a warm transiting Neptune-mass planet orbiting TOI-5678. After four non-detections corresponding to possible periods, CHEOPS detected a transit event matching a unique period alias. Joint modeling reveals that TOI-5678 hosts a 47.73 day period planet. TOI-5678 b has a mass of 20 (+-4) Me and a radius of 4.91 (+-0.08 Re) . Using interior structure modeling, we find that TOI-5678 b is composed of a low-mass core surrounded by a large H/He layer with a mass of 3.2 (+1.7, -1.3) Me. TOI-5678 b is part of a growing sample of well-characterized transiting gas giants receiving moderate amounts of stellar insolation (11 Se). Precise density measurement gives us insight into their interior composition, and the objects orbiting bright stars are suitable targets to study the atmospheric composition of cooler gas giants.Comment: 17 pages, 10 figures, accepted to A&

    A long-period transiting substellar companion in the super-Jupiters to brown dwarfs mass regime and a prototypical warm-Jupiter detected by TESS

    Get PDF
    We report on the confirmation and follow-up characterization of two long-period transiting substellar companions on low-eccentricity orbits around TIC 4672985 and TOI-2529, whose transit events were detected by the TESS space mission. Ground-based photometric and spectroscopic follow up from different facilities, confirmed the substellar nature of TIC 4672985 b, a massive gas giant, in the transition between the super-Jupiters and brown-dwarfs mass regime. From the joint analysis we derived the following orbital parameters: P = 69.0480+0.0004−0.0005 d, Mp = 12.74+1.01−1.01 MJ, Rp =1.026+0.065−0.067 RJ and e = 0.018+0.004−0.004 . In addition, the RV time series revealed a significant trend at the ∼ 350 m s−1 yr−1level, which is indicative of the presence of a massive outer companion in the system. TIC 4672985 b is a unique example of a transiting substellar companion with a mass above the deuterium-burning limit, located beyond 0.1 AU and in a nearly circular orbit. These planetary properties are difficult to reproduce from canonical planet formation and evolution models. For TOI-2529 b, we obtained the following orbital parameters: P = 64.5949+0.0003−0.0003 d, Mp =2.340+0.197−0.195 MJ, Rp = 1.030+0.050−0.050 RJ and e = 0.021+0.024−0.015 , making this object a new example of a growing population of transiting warm giant planets

    Three Saturn-mass planets transiting F-type stars revealed with TESS and HARPS

    Get PDF
    While the sample of confirmed exoplanets continues to increase, the population of transiting exoplanets around early-type stars is still limited. These planets allow us to investigate the planet properties and formation pathways over a wide range of stellar masses and study the impact of high irradiation on hot Jupiters orbiting such stars. We report the discovery of TOI-615b, TOI-622b, and TOI-2641b, three Saturn-mass planets transiting main sequence, F-type stars. The planets were identified by the Transiting Exoplanet Survey Satellite (TESS) and confirmed with complementary ground-based and radial velocity observations. TOI-615b is a highly irradiated (\sim1277 FF_{\oplus}) and bloated Saturn-mass planet (1.690.06+0.05^{+0.05}_{-0.06}RJupR_{Jup} and 0.430.08+0.09^{+0.09}_{-0.08}MJupM_{Jup}) in a 4.66 day orbit transiting a 6850 K star. TOI-622b has a radius of 0.820.03+0.03^{+0.03}_{-0.03}RJupR_{Jup} and a mass of 0.300.08+0.07^{+0.07}_{-0.08}~MJupM_{Jup} in a 6.40 day orbit. Despite its high insolation flux (\sim600 FF_{\oplus}), TOI-622b does not show any evidence of radius inflation. TOI-2641b is a 0.370.04+0.05^{+0.05}_{-0.04}MJupM_{Jup} planet in a 4.88 day orbit with a grazing transit (b = 1.040.06+0.05^{+0.05}_{-0.06 }) that results in a poorly constrained radius of 1.610.64+0.46^{+0.46}_{-0.64}RJupR_{Jup}. Additionally, TOI-615b is considered attractive for atmospheric studies via transmission spectroscopy with ground-based spectrographs and JWST\textit{JWST}. Future atmospheric and spin-orbit alignment observations are essential since they can provide information on the atmospheric composition, formation and migration of exoplanets across various stellar types.Comment: 16 pages, 17 figures, submitted to A&

    A long-period transiting substellar companion in the super-Jupiters to brown dwarfs mass regime and a prototypical warm-Jupiter detected by TESS

    Full text link
    We report on the confirmation and follow-up characterization of two long-period transiting substellar companions on low-eccentricity orbits around TIC 4672985 and TOI-2529, whose transit events were detected by the TESS space mission. Ground-based photometric and spectroscopic follow-up from different facilities, confirmed the substellar nature of TIC 4672985 b, a massive gas giant, in the transition between the super Jupiters and brown dwarfs mass regime. From the joint analysis we derived the following orbital parameters: P = 69.0480 d, Mp = 12.74 Mjup, Rp = 1.026 Rjup and e = 0.018. In addition, the RV time series revealed a significant trend at the 350 m/s/yr level, which is indicative of the presence of a massive outer companion in the system. TIC 4672985 b is a unique example of a transiting substellar companion with a mass above the deuterium-burning limit, located beyond 0.1 AU and in a nearly circular orbit. These planetary properties are difficult to reproduce from canonical planet formation and evolution models. For TOI-2529 b, we obtained the following orbital parameters: P = 64.5949 d, Mp = 2.340 Mjup, Rp = 1.030 Rjup and e = 0.021, making this object a new example of a growing population of transiting warm giant planets.Comment: Accepted in A&
    corecore