82 research outputs found

    Comment on „palaeoenvironmental control on distribution of crinoids in the bathonian (middle jurassic) of England and France” by Aaron W. Hunter and Charlie J. Underwood

    Get PDF
    Aaron W. Hunter and Charlie J. Underwood in their article published in Acta Palaeontologica Polonica (Hunter and Underwood 2009) present some interesting results regarding facies control on the distribution of certain crinoids in the Bathonian of England and France. This is an important contribution, but we feel necessary to comment on some issues raised in their paper

    Reassessing the improbability of a muscular crinoid stem

    Get PDF
    Muscular articulations in modern stalked crinoids are only present in the arms. Although it has been suggested that certain coiled-stemmed fossil taxa may have been functionally adapted to utilize muscles, evidence supporting this interpretation is lacking. Here, we use cathodoluminescence and SEM to reveal the skeletal microstructure of the enigmatic coiled-stemmed taxon Ammonicrinus (Flexibilia). Based on the well-established link between skeletal microstructure and the nature of infilling soft tissues in modern echinoderms, we reconstructed the palaeoanatomy of the Middle Devonian ammonicrinids. We show that their median columnals with elongated lateral columnal enclosure extensions (LCEE) have stereom microstructure unexpectedly resembling that in the crinoid muscular arm plates. In particular, large ligamentary facets, that are present on each side of a transverse ridge, are mainly comprised of fine galleried stereom that is indicative of the mutable collagenous tissues. In contrast, fine labyrinthic stereom, commonly associated with muscles, is situated in the periphery on each side of the surface of elongated LCEE. Our findings thus strongly suggest that the muscles may have also been present in the stem of ammonicrinids. These results reassess the previous hypotheses about evolution of muscles in crinoids and provide new insights into the mode of life of Ammonicrinus

    Experimental tumbling of Dreissena polymorpha : implications for recognizing durophagous predation in the fossil record

    Get PDF
    Shell damage left by predators constitutes an important source of information on predator–prey interactions. However, recognition of the origins of shell damage can often be controversial, and needs to be assessed cautiously. More specifically, differentiation between predation- and abiotic-induced shell damage remains challenging. Here, we show the results of tumbling experiments using a bivalve species Dreissena polymorpha in order to determine rates and patterns of shell damage induced by physical forces in high-energy conditions. It is demonstrated that, in contrast to durophagous fish and crab predation, abiotic-induced fragmentation and damage are typically characterized by the presence of distinct abrasive scratches and wear scars on the surface of shell fragments. Furthermore, fragmented shells typically reveal a wide size distribution, and a different degree of sphericity and roundness resulting from abrasion. Importantly, large shell fragments commonly display smooth edges. These data suggest that durophagous predation, which typically induces fragmentation into large and angular shell fragments bearing no wear scars, can be reliably recognized both in present-day environments and in the fossil record

    Body-size increase in crinoids following the end-Devonian mass extinction

    Get PDF
    The Devonian period ended with one of the largest mass extinctions in the Earth history. It comprised a series of separate events, which eliminated many marine species and led to long-term post-extinction reduction in body size in some groups. Surprisingly, crinoids were largely unaffected by these extinction events in terms of diversity. To date, however, no study examined the long-term body-size trends of crinoids over this crucial time interval. Here we compiled the first comprehensive data sets of sizes of calyces for 262 crinoid genera from the Frasnian-Visean. We found that crinoids have not experienced long-term reduction in body size after the so-called Hangenberg event. Instead, size distributions of calyces show temporal heterogeneity in the variance, with an increase in both the mean and maximum biovolumes between the Famennian and Tournaisian. The minimum biovolume, in turn, has remained constant over the study interval. Thus, the observed pattern seems to fit a Brownian motion-like diffusion model. Intriguingly, the same model has been recently invoked to explain morphologic diversification within the eucladid subclade during the Devonian-early Carboniferous. We suggest that the complex interplay between abiotic and biotic factors (i.e., expansion of carbonate ramps and increased primary productivity, in conjunction with predatory release after extinction of Devonian-style durophagous fishes) might have been involved not only in the early Mississippian diversity peak of crinoids, but possibly also in their overall passive expansion into larger body-size niches

    Drill Holes and Predation Traces versus Abrasion-Induced Artifacts Revealed by Tumbling Experiments

    Get PDF
    Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular, circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria (evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts, consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping trace

    First record of catacrinid crinoid from the Lower Permian of Spitsbergen

    Get PDF
    An early Permian (late Artinskian-Roadian) cladid crinoid (Catacrinidae gen. et sp. indet.) is reported for the first time from the Vøringen Member of the Kapp Starostin Formation of Spitsbergen. The specimen is partly articulated and preserves a considerable part of its stalk and a complete cup, but only the proximal portions of its arms. Thus, it can− not be identified with any degree of certainty at the generic level. Despite this, our finding is important as it constitutes one of the youngest records of catacrinid crinoids to date and con− siderably extends the palaeogeographic distribution of this group

    Cretaceous Roveacrinids from Mexico revisited: Overcoming the taxonomic misidentifications and subsequent biostratigraphic abuse

    Get PDF
    The Mesozoic carbonate deposits of Mexico yield a number of overlooked, ill-known, and even enigmatic microfossils, among which are roveacrinoids (Echinodermata, Crinoidea, Roveacrinida). Most of these pelagic organisms probably came from the central Tethysian seaways, and later on from the early central Atlantic Ocean through the northwestern Tethysian neck, thus reaching the Central American platforms (Comanchean shelf, Central Texas platform, and Coahuila platform) and the Western Interior seaway. The present work intends to enlist as comprehensively as possible the Mexican records of roveacrinid crinoids, to propose a revised interpretation of the sections illustrated (most of them being originally erroneously assigned) and to provide a sound data base for further systematic and biostratigraphic research

    Ophiuroids Discovered in the Middle Triassic Hypersaline Environment

    Get PDF
    Echinoderms have long been considered to be one of the animal phyla that is strictly marine. However, there is growing evidence that some recent species may live in either brackish or hypersaline environments. Surprisingly, discoveries of fossil echinoderms in non-(open)marine paleoenvironments are lacking. In Wojkowice Quarry (Southern Poland), sediments of lowermost part of the Middle Triassic are exposed. In limestone layer with cellular structures and pseudomorphs after gypsum, two dense accumulations of articulated ophiuroids (Aspiduriella similis (Eck)) were documented. The sediments with ophiuroids were formed in environment of increased salinity waters as suggested by paleontological, sedimentological, petrographical and geochemical data. Discovery of Triassic hypersaline ophiuroids invalidates the paleontological assumption that fossil echinoderms are indicators of fully marine conditions. Thus caution needs to be taken when using fossil echinoderms in paleoenvironmental reconstructions

    Crinoids from Svalbard in the aftermath of the end-Permian mass extinction

    Get PDF
    The end−Permian mass extinction constituted a major event in the history of cri− noids. It led to the demise of the major Paleozoic crinoid groups including cladids, disparids, flexibles and camerates. It is widely accepted that a single lineage, derived from a late Paleo− zoic cladid ancestor (Ampelocrinidae), survived this mass extinction. Holocrinid crinoids (Holocrinus, Holocrinida) along with recently described genus Baudicrinus (Encrinida), the only crinoid groups known from the Early Triassic, are considered the stem groups for the post−Paleozoic monophyletic subclass Articulata. Here, we report preliminary data on unex− pectedly diverse crinoid faunas comprising at least four orders from the Lower Triassic (Induan and Olenekian) of Svalbard, extending their stratigraphic ranges deeper into the early Mesozoic. These findings strongly imply that the recovery of crinoids in the aftermath of the end−Permian extinction began much earlier at higher palaeolatitudes than in the central Tethys

    Shared patterns in body size declines among crinoids during the Palaeozoic extinction events

    Get PDF
    Crinoids were among the most abundant marine benthic animals throughout the Palaeozoic, but their body size evolution has received little attention. Here, we compiled a comprehensive database on crinoid calyx biovolumes throughout the Palaeozoic. A model comparison approach revealed contrasting and complex patterns in body size dynamics between the two major crinoid clades (Camerata and Pentacrinoidea). Interestingly, two major drops in mean body size at around two mass extinction events (during the late Ordovician and the late Devonian respectively) are observed, which is reminiscent of current patterns of shrinking body size of a wide range of organisms as a result of climate change. The context of some trends (marked declines during extinctions) suggests the cardinal role of abiotic factors (dramatic climate change associated with extinctions) on crinoid body size evolution; however, other patterns (two intervals with either relative stability or steady size increase in periods between mass extinctions) are more consistent with biotic drivers
    corecore