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Abstract

Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of
predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by
abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time
and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that
abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular,
circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling
predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria
(evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have
been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts,
consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to
appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping traces.
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Introduction

Predator–prey interaction is one of the key systems to

understand the evolution of organisms in both modern and past

ecosystems [1–6]. However, the role of predation in evolution is

hard to evaluate accurately in the fossil record. Predation traces,

such as drill holes, are one of the most powerful and widely used

proxies for predation intensity since they provide direct evidence

of predator-prey interactions [3]. These traces have been

commonly used to document various predation patterns support-

ing dramatic changes in the fossil marine ecosystem record, such

as the Middle Paleozoic Marine Revolution (MPMR) and

Mesozoic Marine Revolution (MMR) [2], [7–11].

As far as a huge body of literature describe both recent and

fossil drill holes [2], [3], [8–16], their recognition and

verification of predatory origin can still be problematic despite

a wide array of, both qualitative and quantitative, criteria [3],

[17]. Actually, properly distinguishing traces produced by

drilling predators from those produced by other biotic and

abiotic factors (including parasitism, dissolution, abrasion or

bioerosion) remains hard to tell in practice [18–21]. Conse-

quently, traces other than predatory drillings can be misiden-

tified and erroneously treated as holes of predatory origin,

inducing overestimation of predation pressure.

In the following, we intend to reconsider the origin of holes

commonly recorded in the fossil shells and provide evidence that

abrasion may leave holes strongly resembling drilling-predator

traces.

Materials and Methods

To simulate shell deterioration/abrasion in seawater-agitated

environment, three independent tumbling experiments using a

rotating barrel LPM-20 (Glass GmbH & Co. KG Spezialmaschi-

nen) were performed at the Faculty of Earth Sciences, Laboratory

of Palaeontology & Biostratigraphy of the University of Silesia. No

specific permissions were required for performing these experi-

ments. We tested commercially available shells of extant unionid

bivalves (Unionidae indet.), gastropods (Nassarius sp.) and brachio-

pods (Frenulina sanguinolenta) with smooth margins and non-

abraded, intact surfaces. These shells were tumbled at 30

revolutions per minute [rpm] for 1 h, 2 h, and 4 h respectively

in a barrel containing 1 kg quartz gravels (ca. 20 mm in diameter),

0.3 kg medium-size sand and 3L of artificial sea water. Given a

tumbling barrel with a 27-cm-diameter and the rotation speed of

30 [rpm], the tumbling speed approximates wave-action of

0.135 m/s. One hour of tumbling is thus time equivalent to ca.

0.5 km of transport or in-place tumbling within the surf zone.

After each of the three tumbling periods, shells were removed from

the barrel and examined for any potential damage to the shell.

The inner outlines of holes were drawn using a camera lucida.

In some cases, where possible, the approximate geometrical shape
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of holes in vertical cross sections was determined by making a

plasticine mold. Measurements were made using electronic

calipers. The data was analyzed using PAST 2.02 software [22].

Observations of selected specimens were conducted with Scanning

Electron Microscope Philips XL220 at the Institute of Paleobi-

ology of the Polish Academy of Sciences in Warsaw.

The specimen collection is housed at the Department of

Palaeontology and Biostratigraphy of the University of Silesia,

Sosnowiec, Poland (catalogue number GIUS 12-3616– Geological

Institute of the University of Silesia).

Results

After each tumbling experiment, shells were only slightly

abraded and not significantly damaged. However, in some cases,

tumbling induced small singular (only rarely multiple) holes that

completely penetrate the shells. These holes are circular, oval or

irregular and perpendicular to the shell surface (Figure 1, Figure 2).

The majority of holes are smooth although some display an

irregular outline. Their vertical cross sections are commonly

parabolic or plane but inclined at different angles with smaller

inner hole openings than outer ones (Table 1, Figure 3). There is a

significant positive correlation between shell size and hole

diameter at least for gastropods (Figure 4A). Similarly, there is

Figure 1. Holes generated by tumbling experiments on various shells. (A) Brachiopod shell (Frenulina sanguinolenta) (GIUS 12-3616/Fs1)
after 4 hours of tumbling. (B) Unionidae bivalve shell (GIUS 12-3616/U1) after 1 hour of tumbling. (C–D) Gastropod shells (Nassarius sp.) (GIUS 12-
3616/N1-2) after 2 hours of tumbling. (E–F) Close up of hole margins in Nassarius sp.
doi:10.1371/journal.pone.0058528.g001

Figure 2. Two morphotypes of the inner outlines of holes and
their frequency distribution (drawings by camera lucida).
doi:10.1371/journal.pone.0058528.g002
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also a strong correlation between the outer and inner hole

diameters (Figure 4B).

Furthermore, gastropod shells display non-randomly distributed

holes (Figure 5), i.e., these latter are predominantly located near

their aperture.

Discussion

Whether tumbling experiments imitate accurately the natural

tumbling conditions experienced by shells in the surf zone has

been argued [23–25]. However, such experiments certainly may

provide valuable insights into the character of mechanical damage

and abrasion generated at the shell surface by abiotic processes

[26–28]. Our tumbling experiments clearly showed that abrasion-

induced holes can be important taphonomic process. If these

artifacts are not identified appropriately or accurately, this can

lead to an overestimation of predation intensity in the fossil record.

In recent years, numerous lines of criteria have been proposed

to recognize predatory drill holes. These can be separated into two

groups: (i) non-morphological criteria, i.e., evaluation of holes for

non-random (site-specific, size-selective, or taxon restricted distri-

bution of traces) [29–34] and (ii) morphometric criteria, i.e.,

quantification of drill-hole shapes and their size [8], [35–38].

Predatory borings are generally defined as commonly single and

unhealed perforations perpendicular to the valve surface, having

circular to oval shapes, and regular outlines although irregular

shapes and outlines have been also noted (compare figure 4 in

[36]). Furthermore, the ratio of inner to outer diameter commonly

exceeds 0.5 [8]. Correlation between size of holes and size of bored

fossils has been also used to support the predatory origin of such

traces [32].

Although considerable effort has been devoted to establish the

reliable identification criteria for predation traces, the present data

from tumbling experiments suggest that the existing methods are

insufficient to exclude abrasion artifacts. Nearly all features of

holes generated on shell surfaces during our tumbling experiments

(including shape, outline, ratio of inner to outer diameter,

correlation between size of holes and size of shells as well as

between the inner and outer hole diameter; see Figure 1, Figure 4

and Table 1) are identical to those observed in recent and fossil

holes commonly ascribed to drilling predation (compare figure 1 in

[8]; figure 1I, and 2B,G,K,N,P in [39]).

An accurate identification of the underlying causes of these

surprising results, especially for a site-specificity, is difficult. It can

be speculated, however, that at least two mechanisms may be

involved in the observed pattern. First, the holes may have

developed as a consequence of a progressive and preferential

abrasion experienced by the knobs of apertural side of a gastropod

shell in a rotating barrel leading to the directional thinning of the

specific site of the shell. Alternatively, such holes may be formed
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Figure 3. Projections of hole margins at vertical cross sections.
doi:10.1371/journal.pone.0058528.g003
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via the preferential hits of the apertural side of a gastropod shell in

a rotating barrel by pebbles leading to the formation of perforation

due to the weakening of the shell structure in that area. Then,

more or less regular shape of such holes may be modeled with

suspended sediment in an agitated seawater.

Given above, making a reliable estimation of predation intensity

in the fossil record seems very difficult. Considering the utility of

drill holes as predation proxies, novel techniques for reliable

identification of predatory traces are needed. Recently developed

microstructural analyses (such as the identification of radular

rasping marks on drill-hole walls) provide the most promising

criteria to accurately identify the drillers [39], [40]. However, we

have to keep in mind that the drilling process, when chemically

aided, may sometimes obliterate such predatory microtraces.

Furthermore, abrasion may also wear away microstructural details

of the surface texture or even possibly produce shallow grooves

(wear scars) which may seemingly mimic radular rasping marks

(compare figure 3A in [41]).
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