138 research outputs found
Mantle wedge temperatures and their potential relation to volcanic arc location
The mechanisms underpinning the formation of a focused volcanic arc above subduction zones are debated. Suggestions include controls by: (i) where the subducting plate releases water, lowering the solidus in the overlying mantle wedge; (ii) the location where the mantle wedge melts to the highest degree; and (iii) a limit on melt formation and migration imposed by the cool shallow corner of the wedge. Here, we evaluate these three proposed mechanisms using a set of kinematically-driven 2D thermo-mechanical mantle-wedge models in which subduction velocity, slab dip and age, overriding-plate thickness and the depth of decoupling between the two plates are systematically varied. All mechanisms predict, on the basis of model geometry, that the arc-trench distance, D, decreases strongly with increasing dip, consistent with the negative D-dip correlations found in global subduction data. Model trends of sub-arc slab depth, H, with dip are positive if H is wedge-temperature controlled and overriding-plate thickness does not exceed the decoupling depth by more than 50 km, and negative if H is slab-temperature controlled. Observed global H-dip trends are overall positive. With increasing overriding plate thickness, the position of maximum melting shifts to smaller H and D, while the position of the trenchward limit of the melt zone, controlled by the wedge's cold corner, shifts to larger H and D, similar to the trend in the data for oceanic subduction zones. Thus, the limit imposed by the wedge corner on melting and melt migration seems to exert the first-order control on arc position
A multi-proxy investigation of mantle oxygen fugacity along the Reykjanes Ridge
Mantle oxygen fugacity (fO2) governs the physico-chemical evolution of the Earth, however current estimates from commonly used basalt redox proxies are often in disagreement. In this study we compare three different potential basalt fO2 proxies: Fe3+/Fetot, V/Sc and V isotopes, determined on the same submarine lavas from a 700 km section of the Reykjanes Ridge, near Iceland. These samples provide a valuable test of the sensitivities of fO2 proxies to basalt petrogenesis, as they formed at different melting conditions and from a mantle that towards Iceland exhibits increasing long-term enrichment of incompatible elements. New trace element data were determined for 63 basalts with known Fe3+/Fetot. A subset of 19 lavas, covering the geographical spread of the ridge transect, was selected for vanadium isotope analyses.
Vanadium is a multi-valence element whose isotopic fractionation is theoretically susceptible to redox conditions. Yet, the VAA composition of basaltic glasses along the Reykjanes Ridge covers only a narrow range (VAA = −1.09 to −0.86‰; 1SD = 0.02–0.09) and does not co-vary with fractionation-corrected Fe3+/Fetot (0.134–0.151; 1SD = 0.005) or V/Sc (6.6–8.5; 1SD = 0.1-1.3) ratios. However, on a global scale, basaltic VAA may be controlled by the extent of melting. The V/Sc compositions of primitive (MgO > 7.5 wt%) basalts show no systematic change along the entire length of the Reykjanes Ridge. Typical peridotite melting models in which source Fe3+/Fetot is constant at 5% and that account for the increased mantle potential temperature nearer the plume center and the fO2 dependent partitioning of V, can reproduce the V/Sc data. However, while these melting models predict that basalt Fe3+/Fetot ratios should decrease with increasing mantle potential temperature towards Iceland, fractionation-corrected Fe3+/Fetot of Reykjanes Ridge lavas remain nearly constant over the ridge length. This discrepancy is explained by source heterogeneity, where an oxidized mantle pyroxenite component contributes to melting with increasing proximity to Iceland.
Comparison of observed and modeled Fe3+/Fetot indicate that source variation in fO2 is present under the Reykjanes Ridge, with higher Fe3+/Fetot closer to Iceland. This source variability in fO2 cannot be resolved by V isotopes and redox-sensitive trace element ratios, which instead appear to record magmatic processes
Melt generation beneath Arctic Ridges: Implications from Ule
We present new 238U-230Th-226Ra-210Pb, 235U-231Pa, and Nd, Sr, Hf, and Pb isotope data for the slow- to ultraslow-spreading Mohns, Knipovich, and Gakkel Ridges. Combined with previous work, our data from the Arctic Ridges cover the full range of axial depths from the deep northernmost Gakkel Ridge shallowing upwards to the Knipovich, Mohns, and Kolbeinsey Ridges north of Iceland. Age-constrained samples from the Mohns and Knipovich Ridges have (230Th/238U) activity ratios ranging from 1.165 to 1.30 and 1.101 to 1.225, respectively. The high 230Th excesses of Kolbeinsey, Mohns, and Knipovich mid-ocean ridge basalts (MORB) are erupted from ridges producing relatively thin (Mohns, Knipovich) to thick (Kolbeinsey) oceanic crust with evidence for sources ranging from mostly peridotite (Kolbeinsey) to eclogite-rich mantle (Mohns, Knipovich). Age-constrained lavas from 85ºE on the Gakkel Ridge, on the other hand, overlie little to no crust and range from small (~5%) 230Th excesses to small 238U excesses (~5%). The strong negative correlation between (230Th/238U) values vs. axial ridge depth among Arctic ridge basalts is controlled not only by solidus depth influence on 238U-230Th disequilibria, but also by variations in mantle source lithology and depth to the base of the lithosphere, which is expected to vary at ultra-slow spreading ridges. Small 231Pa excesses (65% excess) in age constrained basalts support the presence of eclogite in the mantle source for this region. Conversely, the ultraslow-spreading Gakkel Ridge basalts are homogeneous, with Sr, Nd, and Hf radiogenic isotopic signatures indicative of a long time-averaged depleted mantle source. The Gakkel samples have minimum (226 Ra/230Th) ratios ranging from 3.07 to 3.65 ± 3%, which lie along and extend the global negative correlation between 226Ra and 230Th excesses observed in MORB. The new 230Th-226Ra data support a model for global MORB production in which deep melts record interaction with shallower materials. This scenario requires either mixing with shallow-derived melts, or melt-rock reaction with shallower rocks in the lithosphere or crust
Rhenium elemental and isotopic variations at magmatic temperatures
This work was funded by Natural Environment Research Council UK Standard Grant to RGH, AJD, and JP (NE/T001119).Recent analytical advances in the measurement of rhenium (Re) isotope ratios allow its potential as a palaeoredox and chemical weathering proxy to be explored. However, a successful isotopic proxy must be grounded by an understanding of its composition and behaviour in the solid Earth. Here, we present Re concentrations and Re isotopic (δ187Re) compositions for a well-characterised sequence of lavas from Hekla volcano, Iceland. The concentration of Re varies from 0.02 to 1.4 ng/g, decreasing from basalt to more evolved lavas. We show that the crystallisation and removal of magnetite is responsible for the Re decrease in this system. By contrast, δ187Re values for the same suite of samples show a relatively narrow range (−0.45 to −0.22 0/1000), suggesting minimal resolvable Re isotope fractionation between magnetite and the silicate melt. Together with other samples, including mid-ocean ridge basalts, these first igneous data can be used to estimate a baseline for terrestrial materials (δ187Re = −0.33 ± 0.15 0/1000, 2 s.d., n = 14), from which low-temperature Re isotope variations in Earth’s surficial environments can be assessed, alongside the global isotope mass balance of Re.Peer reviewe
Nucleosynthetic Heterogeneity Controls Vanadium Isotope Variations in Bulk Chondrites
The vanadium (V) isotope composition of early solar system materials have been hypothesized to be sensitive to high energy irradiation that originated from the young Sun. Vanadium has two isotopes with masses 50 and 51 that have (51)V/(50)V ratio of approximately 410. High energy irradiation produces (50)V from various target isotopes of Ti, Cr and Fe, which would result in light V isotope compositions (expressed as delta (51)V in per mille = 1000 x (((51)V/(50)V(sub sample)/(51)V/(50)V(sub AlfaAesar)) - 1)) relative to a presumably chondritic starting composition. Recently published V isotope data for calcium aluminium inclusions (CAIs) has revealed some very negative values relative to chondrites (by almost -4 per mille) that were indeed interpreted to reflect irradiation processes despite the fact that the studied CAIs all exhibited significant initial abundances of (10)Be, while only a few CAIs displayed light V isotope compositions. It is difficult to relate V isotope variations directly to a singular process because V only possesses two isotopes. Therefore, V isotope variations can principally be produced both mass dependent and independent processes. Mass dependent kinetic stable isotope fractionation is common in CAIs for refractory elements due to partial condensation/evaporation processes. The element strontium (Sr) has an almost identical condensation temperature to V and studies of stable Sr isotope compositions in CAIs reveal both heavy and light values relative to chondrites of several permil. These variations are similar in magnitude to those reported for V isotopes in CAIs, which suggests it is possible that some of the V isotope variation in CAIs could be due to kinetic stable isotope fractionation during condensation/evaporation processes
No V-Fe-Zn isotopic variation in basalts from the 2021 Fagradalsfjall eruption
The Earth’s mantle is chemically heterogeneous in space and time, which is often reflected by variable isotopic compositions of mantle derived basalts. Basalts from the first 40 days of the 2021 Fagradalsfjall eruption, Reykjanes Peninsula, Iceland, display systematic temporal variations in the ratios of incompatible elements alongside resolvable variations in Sr, Nd and Pb radiogenic isotopes. These variations reflect progressive influx of magma derived from melting of a deeper, more enriched and potentially lithologically distinct source. We use this eruptive time series to conduct the first combined V-Fe-Zn isotope study, exploring the sensitivity of the combined isotopic approach, with particular focus on fingerprinting source lithological heterogeneity. We find no analytically resolvable change in V (δ51VAA between −0.95 ± 0.09 ‰ 2 s.d. and −0.86 ± 0.07 ‰ 2 s.d.), Fe (δ56FeIRMM-524 between +0.047 ± 0.042 ‰ 2 s.d. and +0.094 ± 0.049 ‰ 2 s.d.) and Zn (δ66ZnAA-ETH between −0.042 ± 0.003 ‰ 2 s.d. and +0.013 ± 0.027 ‰ 2 s.d.) isotopic compositions. The lack of variability in V-Fe-Zn isotopes, despite the evolving trace element and radiogenic isotope ratios, suggests there is no significant contribution of melts from a lithologically distinct (pyroxenite) mantle component under the Reykjanes Peninsula
Thallium concentration and thallium isotope composition of lateritic terrains
Continental weathering plays a key role in modifying the geochemical budget of terrestrial reservoirs. Laterites are the products of extreme sub-aerial continental weathering. This study presents the first investigation of thallium (Tl) abundances and stable isotopic compositions of lateritic terrains. Two laterite profiles from India of differing protolith and age are studied. Thallium concentrations range between 7 and 244 ng/g for a basalt-based lateritic profile and 37–652 ng/g within a greywacke lateritic profile. The average Tl stable isotope composition of the two profiles is similar to many typical igneous materials, however, the intense tropical weathering causes a small but resolvable fractionation of Tl stable isotopes towards heavy values in the residual soils. The profiles are dominated by significant positive isotope excursions (reported as ε205Tl relative to standard NBS997) of +3.5 ± 0.5 2sd and +6.2 ± 0.5 2sd at the inferred palaeowater tables within both laterite profiles. These signatures likely reflect combined changes in redox state and mineralogy. Extensive mineral dissolution under through-flowing fluids alongside the formation of new phases such as phyllosilicates and Mn- and Fe-oxides and hydroxides likely account for some of the Tl mobilisation, sorption and coprecipitation. In the case of laterites, the formation of the new phases and role of surface sorption likely contribute to stable Tl isotope fractionation. The identification of strong isotope excursions at inferred palaeowater tables encourages future research to determine specific mineral phases that may drive significant fractionation of Tl stable isotopes. This study showcases the magnitude of natural variation possible in terrestrial soils. Such information is key to the nascent application of Tl isotope compositions as tracers of anthropogenic pollution
A new method for the determination of low-level actinium-227 in geological samples
Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Radioanalytical and Nuclear Chemistry 296 (2013): 279-283, doi:10.1007/s10967-012-2140-0.We developed a new method for the determination of 227Ac in geological samples. The method uses extraction chromatographic techniques and alpha-spectrometry and is applicable for a range of natural matrices. Here we report on the procedure and results of the analysis of water (fresh and seawater) and rock samples. Water samples were acidified and rock samples underwent total dissolution via acid leaching. A DGA (N,N,N’,N’-tetra-n-octyldiglycolamide) extraction chromatographic column was used for the separation of actinium. The actinium fraction was prepared for alpha spectrometric measurement via cerium fluoride micro-precipitation. Recoveries of actinium in water samples were 80±8 % (number of analyses n=14) and in rock samples 70±12 % (n=30). The minimum detectable activities (MDA) were 0.017-0.5 Bq kg-1 for both matrices. Rock sample 227Ac activities ranged from 0.17 to 8.3 Bq kg-1 and water sample activities ranged from below MDA values to 14 Bq kg-1of 227Ac. From the analysis of several standard rock and water samples with the method we found very good agreement between our results and certified values
Vanadium isotope fractionation during plutonic differentiation and implications for the isotopic composition of the upper continental crust
The analysis of emerging stable isotopic systems in clastic sedimentary rocks is increasingly used to determine the average composition of the upper continental crust through geological time. Any temporal variations can then be linked to global-scale processes such as the oxygenation of the atmosphere or onset of plate tectonics. Given that clastic sediments are ultimately eroded from the upper continental crust, knowledge of the potential isotopic variability in the plutonic rocks which make up the crust is vital for interpreting these sedimentary records. Here we focus on the multi-valent transition metal element vanadium (V) and present the first investigation of the V isotopic composition of an upper crustal granitic pluton and its mineral separates. We use well-characterised samples from the calc-alkaline Boggy Plain Zoned Pluton, Australia. Whole rock samples and mineral separates show increases in δ51V during magmatic differentiation, similar to what has been documented for extrusive differentiation suites. However, whole rock δ51V is scattered, reflecting variations in the modal mineralogy and demonstrating the typical heterogeneity generated when dealing with coarse grained igneous rocks. In contrast, mineral separates show well-defined trends in δ51V, where mineral-melt fractionation factors are largely controlled by bonding environment rather than direct redox variations. We interpret the increase in δ51V during magmatic differentiation to be driven by crystallisation of isotopically light magnetite, biotite and hornblende, in contrast with previous interpretations from extrusive lavas that oxide crystallisation alone is the main driver of V isotopic fractionation. The overall range of whole rock samples and their mineral separates is > 0.6 ‰ within this single plutonic body. The range highlights that the upper continental crust can have extremely heterogeneous V isotopic composition over small geographic areas. This detailed examination of V isotopes in a simple system may shed light on the discrepancy between interpretations of the timing of felsic crust formation derived from the V and Ti isotopic compositions of glacial diamictites
Rhenium Isotopes Record Oxidative Weathering Intensity in Sedimentary Rocks
Oxidative weathering of organic carbon in sedimentary rocks is a major source of CO2 to the atmosphere over geological timescales, but the size of this emission pathway in Earth's past has not been directly quantified due to a lack of available proxy approaches. We have measured the rhenium isotope composition of organic‐rich rocks sampled from unweathered drill cores and weathered outcrops in south Texas, whose stratigraphic successions can be tightly correlated. Oxidative weathering of more than 90% of the organic carbon and ∼85% of the rhenium is accompanied by a shift to lower rhenium isotope compositions in the weathered outcrops. The calculated isotope composition of rhenium weathered from the initial bedrock for individual samples varies systematically by ∼0.7‰ with different fractions of rhenium loss. This variation can be empirically modeled with isotope fractionation factors of α = 1.0002–1.0008. Our results indicate that the isotope composition of rhenium delivered to the oceans can be altered by weathering intensity of rock organic matter and that the rhenium isotope composition of seawater is sensitive to past oxidative weathering and associated CO2 emissions
- …