278 research outputs found

    Analysis of nickel concentration profiles around the roots of the hyperaccumulator plant Berkheya coddii using MRI and numerical simulations

    Get PDF
    Investigations of soil-root interactions are hampered by the difficult experimental accessibility of the rhizosphere. Here we show the potential of Magnetic Resonance Imaging (MRI) as a non-destructive measurement technique in combination with numerical modelling to study the dynamics of the spatial distribution of dissolved nickel (Ni2+) around the roots of the nickel hyperaccumulator plant Berkheya coddii. Special rhizoboxes were used in which a root monolayer had been grown, separated from an adjacent inert glass bead packing by a nylon membrane. After applying a Ni2+ solution of 10mgl−1, the rhizobox was imaged repeatedly using MRI. The obtained temporal sequence of 2-dimensional Ni2+ maps in the vicinity of the roots showed that Ni2+ concentrations increased towards the root plane, revealing an accumulation pattern. Numerical modelling supported the Ni2+ distributions to result from advective water flow towards the root plane, driven by transpiration, and diffusion of Ni2+ tending to eliminate the concentration gradient. With the model, we could study how the accumulation pattern of Ni2+ in the root zone transforms into a depletion pattern depending on transpiration rate, solute uptake rate, and Ni2+ concentration in solutio

    A comprehensive approach for correcting voxel‐wise b‐value errors in diffusion MRI

    Get PDF
    Purpose In diffusion MRI, the actual b‐value played out on the scanner may deviate from the nominal value due to magnetic field imperfections. A simple image‐based correction method for this problem is presented. Methods The apparent diffusion constant (ADC) of a water phantom was measured voxel‐wise along 64 diffusion directions at b = 1000 s/mm2. The true diffusion constant of water was estimated, considering the phantom temperature. A voxel‐wise correction factor, providing an effective b‐value including any magnetic field deviations, was determined for each diffusion direction by relating the measured ADC to the true diffusion constant. To test the method, the measured b‐value map was used to calculate the corrected voxel‐wise ADC for additionally acquired diffusion data sets on the same water phantom and data sets acquired on a small water phantom at three different positions. Diffusion tensor was estimated by applying the measured b‐value map to phantom and in vivo data sets. Results The b‐value‐corrected ADC maps of the phantom showed the expected spatial uniformity as well as a marked improvement in consistency across diffusion directions. The b‐value correction for the brain data resulted in a 5.8% and 5.5% decrease in mean diffusivity and angular differences of the primary diffusion direction of 2.71° and 0.73° inside gray and white matter, respectively. Conclusion The actual b‐value deviates significantly from its nominal setting, leading to a spatially variable error in the common diffusion outcome measures. The suggested method measures and corrects these artifacts

    Optimizing Ni-Fe-Ga alloys into Ni2_{2}FeGa for the hydrogenation of CO2_{2} into methanol

    Get PDF
    A screening study of the catalytic performance of ternary alloy nanoparticles containing nickel, iron and gallium supported on silica for methanol synthesis from CO2_{2} and H2_{2} was performed. Catalysts were prepared by incipient wetness impregnation and subsequently reduced in H2_{2} before catalytic testing. Ni2_{2}FeGa showed the best performance of the tested catalysts in terms of methanol yield. An optimization of the preparation was done to improve activity and selectivity, reaching a performance close to that of commercially available Cu/ZnO/Al2_{2}O3_{3}/MgO at low reaction temperatures and pressure. Extensive in situ characterisation using environmental TEM, in situ XRD and in situ EXAFS of the formation of the Ni2_{2}FeGa catalyst explains an optimal reduction temperature of 550 °C: warm enough that the three atomic species will form an alloy while cold enough to prevent the catalyst from sintering during the formation

    The CAT-ACT Beamline at ANKA: A new high energy X-ray spectroscopy facility for CATalysis and ACTinide research

    Get PDF
    A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including ‘flux hungry’ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported

    The CAT-ACT Beamline at ANKA : A new high energy X-ray spectroscopy facility for CATalysis and ACTinide research

    Get PDF
    A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including ‘flux hungry’ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported

    Temperature distribution in a gas-solid fixed bed probed by rapid magnetic resonance imaging

    Full text link
    Controlling the temperature distribution inside catalytic fixed bed reactors is crucial for yield optimization and process stability. Yet, in situ temperature measurements with spatial and temporal resolution are still challenging. In this work, we perform temperature measurements in a cylindrical fixed bed reactor by combining the capabilities of real-time magnetic resonance imaging (MRI) with the temperature-dependent proton resonance frequency (PRF) shift of water. Three-dimensional (3D) temperature maps are acquired while heating the bed from room temperature to 60~^{\circ}C using hot air. The obtained results show a clear temperature gradient along the axial and radial dimensions and agree with optical temperature probe measurements with an average error of ±\pm 1.5~^{\circ}C. We believe that the MR thermometry methodology presented here opens new perspectives for the fundamental study of mass and heat transfer in gas-solid fixed beds and in the future might be extended to the study of reactive gas-solid systems
    corecore