Optimizing Ni-Fe-Ga alloys into Ni2_{2}FeGa for the hydrogenation of CO2_{2} into methanol

Abstract

A screening study of the catalytic performance of ternary alloy nanoparticles containing nickel, iron and gallium supported on silica for methanol synthesis from CO2_{2} and H2_{2} was performed. Catalysts were prepared by incipient wetness impregnation and subsequently reduced in H2_{2} before catalytic testing. Ni2_{2}FeGa showed the best performance of the tested catalysts in terms of methanol yield. An optimization of the preparation was done to improve activity and selectivity, reaching a performance close to that of commercially available Cu/ZnO/Al2_{2}O3_{3}/MgO at low reaction temperatures and pressure. Extensive in situ characterisation using environmental TEM, in situ XRD and in situ EXAFS of the formation of the Ni2_{2}FeGa catalyst explains an optimal reduction temperature of 550 °C: warm enough that the three atomic species will form an alloy while cold enough to prevent the catalyst from sintering during the formation

    Similar works