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Abstract Investigations of soil-root interactions are
hampered by the difficult experimental accessibility of
the rhizosphere. Here we show the potential ofMagnetic
Resonance Imaging (MRI) as a non-destructive mea-
surement technique in combination with numerical
modelling to study the dynamics of the spatial distribu-
tion of dissolved nickel (Ni2+) around the roots of the

nickel hyperaccumulator plant Berkheya coddii. Spe-
cial rhizoboxes were used in which a root monolayer
had been grown, separated from an adjacent inert glass
bead packing by a nylon membrane. After applying a
Ni2+ solution of 10 mg l−1, the rhizobox was imaged
repeatedly using MRI. The obtained temporal se-
quence of 2-dimensional Ni2+ maps in the vicinity of
the roots showed that Ni2+ concentrations increased
towards the root plane, revealing an accumulation
pattern. Numerical modelling supported the Ni2+

distributions to result from advective water flow
towards the root plane, driven by transpiration, and
diffusion of Ni2+ tending to eliminate the concentration
gradient. With the model, we could study how the
accumulation pattern of Ni2+ in the root zone trans-
forms into a depletion pattern depending on transpira-
tion rate, solute uptake rate, and Ni2+ concentration in
solution.
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Introduction

The focus of rhizosphere studies has recently been
opened to the fate of soil pollutants such as heavy
metals as a consequence of increasing awareness of
soil pollution problems and the attempts to control the
pollutants and to remediate contaminated soils
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(Wenzel 2005). Nickel is a heavy metal of concern in
soil that can be of geogenic origin, as in serpentine
soils (Robinson et al. 1999), or may arise from
anthropogenic pollution (Brooks 1998; Ashworth and
Alloway 2004). Nickel hyperaccumulator plants grow-
ing on serpentine soils are able to accumulate at least
ten times more nickel than other plant species growing
in the same environment (Brooks et al. 1977).
Therefore, some hyperaccumulator plants may offer a
sustainable treatment option for the remediation of
metal-contaminated sites, and an opportunity to mine
naturally metal-rich soils by phytomining (Brooks et
al. 1998; Li et al. 2003). An attractive plant for
phytoextraction of Ni is Berkheya coddii Roessler. Its
extraordinary phytoextraction potential results from the
rare combination of high biomass (22 t ha−1), and high
capacity of Ni accumulation in its above-ground
biomass which can reach up to 1% w:w (Robinson et
al. 1997). Despite this, little is known about the
mechanism of Ni hyperaccumulation and root-soil
interactions of Ni hyperaccumulator plants including
Berkheya coddii. Understanding these mechanisms and
interactions could help improving methods for the
phytoextraction of Ni from contaminated soils and also
phytomining (McNear et al. 2005).

However, investigating root-soil interactions such
as the uptake of metals by roots is challenging. It
requires a high-resolution data on the spatial distribu-
tion of solutes because these processes create sub-
stantial differences in concentrations over distances of
a few millimetres from root surfaces. Many rhizo-
sphere processes are dynamic (Darrah 1993; Gregory
and Hinsinger 1999; Wenzel et al. 2001; Hinsinger et
al. 2006), therefore a non-destructive, non-invasive
method to observe rhizosphere processes resolved in
space and time is desirable.

The uptake of trace metals, such as nickel, by roots, is
generally considered to occur through more or less
specific membrane transporters (Zhao et al. 2002;
Whiting et al. 2003). If a metal is removed by roots
from the rhizosphere more rapidly than it can be re-
supplied, by bulk soil via desorption and diffusion, the
metal will become depleted adjacent to the root surface
(Tinker and Nye 2000). In contrast, if the mass flow of a
solute from the bulk soil towards the roots exceeds the
uptake rate of the solute, then a concentration gradient
opposing the advection flux will develop. The resulting
concentration profiles are further influenced by chemical
reactions with other compounds in the rhizosphere and

with the soil matrix. Although these processes in
rhizosphere have been discovered earlier, but due to
technical limitations, they have never been observed in
situ with sufficient temporal and spatial resolution.
Combining new non-destructive measurement tech-
niques such as MRI and numerical simulations can
unravel some aspects of these complex interactions.

Among other new techniques, Magnetic Reso-
nance Imaging (MRI) has been proposed to assess
the spatial distribution of water and metal ions in
porous media (Herrmann et al. 2002; Pierret et al.
2003; Moradi et al. 2008). The presence of paramag-
netic ions and molecules in a solution affects the spin
vector relaxation times (longitudinal relaxation time
T1 and transverse relaxation time T2) of water protons
(1H). The determination of these relaxation times
provides opportunities to trace the movement and
diffusion of dissolved paramagnetic compounds and
ions such as Ni2+ in the porous media. However,
applying MRI to soil-plant system has several
limitations. The presence of ferromagnetic particles
and other paramagnetic compounds in soils can
distort the MRI images and cause signal loss.
Therefore, at the present state, this technique mainly
is applied to carefully selected media such as pre-
treated sand and soil, agar, and glass beads.

In a previous study we developed a MRI method to
study the temporal and spatial distribution of dis-
solved Ni2+ ions in a porous medium under the
influence of absorption by an exchange resin (Moradi
et al. 2008). Here we showed that MRI can detect
concentration profiles and thus can be used to
investigate Ni2+ uptake by hyperaccumulator plants
in a more complex system. We studied the two-
dimensional spatial and temporal distribution of Ni2+

from a planar monolayer mat of roots of the hyper-
accumulator plant Berkheya coddii. We also used
numerical modelling to interpret the measurements
and to analyse the dependence of the Ni2+ gradient
adjacent to the roots on transpiration rate, uptake rate
and initial concentration of Ni2+.

Materials and methods

Rhizobox setup and plant growth

The rhizoboxes (inner dimensions, 100×100×
30 mm) used in this study (Fig. 1) were a modified
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version of the rhizobox system developed and tested by
Wenzel et al. (2001). We changed the frame of the
rhizobox so that the MRI receiver coils could be
installed close to the root plane on the transparent side
of the rhizobox (an acrylic window for root visualiza-
tion and root growth control) to obtain maximal coil
sensitivity in the volume of interest. We sealed the
rhizoboxes using rubber bands and silicon glue. The
experiment started from fully water-saturated condition,
which gave the strongest MRI signal-to-noise ratio
(SNR). We also redesigned the inlet and outlet ports
and increased their number to 30 per box, arranged on
one side of the box in five rows of six ports each, in
order to improve the regulation of the nutrient solution
in the main compartment of the rhizobox.

Seeds of Berkheya coddii were pre-germinated in
perlite and grown until they were 2 weeks old. The
seedlings were transferred to the upper compartment of
the rhizoboxes. The main and the upper compartments
of each rhizobox were filled with porous glass beads
(Sera Werke, Germany) of 0.4–1.0 mm-diameter. The
total porosity of the packing was 65% v/v, and the bulk
density was 0.46 g cm−3. Four rhizoboxes were
prepared in total and four seedlings were planted per
rhizobox. After transplanting, the rhizoboxes were kept
for 8 weeks in a climate chamber with a daily light
cycle (1.0–1.2 lumen cm−3) of 16 h light/ 8 h darkness,
constant humidity (75%) and controlled temperature
(23/16°C day/night). The rhizoboxes were irrigated

with nutrient solution (Kraemer et al. 1996). A
peristaltic pump was used to circulate the nutrient
solution through the rhizoboxes at a rate of around
0.6 l per day. The lower two rows of the ports were
used as inlets for the nutrient solution and the ports of
the uppermost row were used as outlets. Roots started
to grow into the root-only compartment a week after
transplanting. The root-only compartment contained no
glass beads or soil. It consisted of a narrow slit
separated from the glass beads by a nylon membrane
with a mesh size of 20 µm. After 8 weeks of growth,
one of the rhizoboxes that showed the most uniform
root plane was chosen and the MRI experiments were
performed on this rhizobox.

MRI technique and data analysis

MRI was performed using a Philips Intera whole-
body system (Philips medical systems, Best, the
Netherlands) with a static magnetic field of 1.5 Tesla
that results in a proton resonance frequency of
63.8 MHz. We used a T1 mapping technique known
as variable flip angle for the quantification of T1
(Deoni et al. 2003; Treier et al. 2007). This method
calculates T1 with the same accuracy but with a
significantly shorter acquisition time than standard T1
measurement sequences. It is based on the consecu-
tive application of T1-weighted spoiled gradient-echo
(T1 fast-field echo) sequences using different flip

Fig. 1 The rhizobox set up
with a view of the outlet and
inlet ports (left) and the
root-only compartment
(right)
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angles. The steady state signal achieved for a
sequence using phase alternated radio-frequency
(RF) pulses can be calculated using Eq. 1:

I qð Þ
sin qð Þ ¼ exp �TR=T1ð Þ I qð Þ

tan qð Þ þ NðHÞ

� 1� exp �TR=T1ð Þð Þ
� exp �TE=T2*ð Þ; ð1Þ

where I is the signal intensity, N(H) is the proton density,
θ is the RF pulse flip angle, TE is the echo time, and T2

*

is the effective transverse relaxation time. According to
Eq. 1, a plot of I qð Þ=sin qð Þ vs: I qð Þ=tan qð Þ should
yield a straight line with slope exp(−TR/T1). Since this
slope depends only on TR, the known repetition time,
one can calculate T1 without prior knowledge of N(H) or
T2*. The effect of transverse relaxation was considered
negligible for a fairly short echo times. We used an echo
time of 4.5 ms, a repetition time of 9 ms, slice thickness
of 15 mm, a data matrix of 512×512 pixels, and a field
of view of 110×110 mm. The acquisition bandwidth
was 564.10 Hz. For T1 calculation, we cropped the
image part related to the rhizobox in the middle of the
original MRI matrix, therefore the images shown here
are only the cross-sections of the rhizobox. We fitted the
Eq. 1 to the MRI data for different flip angles and
calculated the T1 for each pixel. Due to the limited
spatial sensitivity of the receiver coil, the SNR
deteriorated on the two sides of the rhizobox due to
the higher distance from the coil centre. To avoid
measurement errors due to partial volume effects we
excluded a margin of 5 mm width from the two sides of
the MRI images for further analysis (Fig. 3b). A median
filter with dimensions of 3×3 pixels was applied to the
T1 images to reduce noise. All the images were
processed using Matlab.

In a separate experiment, we found a linear
relationship between the longitudinal relaxation time,
T1, and the Ni2+ concentrations in glass beads
saturated with Ni2+ solution in the concentration
range of 1–30 mg l−1 (Fig. 2). This calibration curve
was used for calculating Ni2+ concentrations for each
pixel from the corresponding T1 values.

Ni2+ uptake experiment

For the Ni2+ uptake experiment, the main compart-
ment of the rhizobox was washed with eight pore-

volumes of Ni2+ solution with a concentration of
10 mg l−1 (prepared using Ni (NO3)2, 6H2O) to
replace the nutrient solution. We used the lower ports
as inlets for ingoing Ni2+ solution and let the solution
overflow over the lateral walls of the rhizobox to
ensure homogeneous initial Ni2+ distribution in the
system. This rather high concentration of Ni2+ was
used to stay clearly above the detection limit for Ni2+

of 1 mg l−1. The rhizobox was put into the MRI
scanner (Fig. 3a) and a circular RF coil was installed
on the root-plane side of the rhizobox close to the
roots. The first T1 measurement could be carried out
3 h after the Ni2+ solution was applied to the
rhizobox. The second and the third measurement
were performed 5 and 11 h after the application of Ni2+

solution, respectively. The amount of transpiration was
measured by weighing the rhizobox before and after
the experiment. We kept the upper compartment dry
for a week before the MRI experiment started,
therefore, evaporation during the experiment and the
transpiration from the upper compartment was consid-
ered negligible and the water was assumed to be taken
up by plant roots only from the main compartment of
the rhizobox.

Modelling

Simulations were carried out using the numerical code
MIN3P (Mayer et al. 2002), which describes variably-
saturated flow and transport in three-dimensional
porous media and geochemical reactions including
kinetic and equilibrium mass exchange with mineral
phases and roots. The simulation of variably saturated
water flow is described by the Richards equation,

y = -49.55x + 2732.2
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 = 0.9897
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Fig. 2 The calibration of T1 versus Ni2+ concentration; bars
represent standard deviations of the mean
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which is implemented in MIN3P using the formula-
tion (Mayer et al. 2002):

SaSs
@h

@t
þ f

@Sa
@t

�r: kraKrh½ � � Qa ¼ 0; ð2Þ

Where t is time (s), � is the total porosity, Sa is
water saturation, Ss is the specific storage coefficient
(m−1), Qa is the sink/source term, K is the hydraulic
conductivity tensor (m s−1), kra is the relative
permeability of the porous medium with respect to
the aqueous phase and is related to the hydraulic
head, h, and water saturation, Sa, through the standard
soil hydraulic functions given by Wosten and
Vangenuchten (1988).

The mass balance equation for the reactive trans-
port of the solutes was as followings:

@

@t
SafT

a
j

� �
¼ r: SafDarTa

j

� �
�r: nTa

j

� �

� Rj � qTa
j ; ð3Þ

Where Ta
j is the total aqueous concentration of the

component j (mol m−3), ν is the Darcy velocity (m s−1),
Da is the hydrodynamic dispersion coefficient (m2 s−1),
Rj is the sink/source term for kinetically-controlled
reactions, and q is the water uptake flux (s−1).

We used MIN3P to simulate Ni2+ distribution in
the rhizobox and adjacent to the root plane as being
taken up by roots. The simulation was set to start with
the initial condition of water saturated for the rhizo-
box and no flux from the boundaries except for the

root plane that was assumed to be a homogeneous
sink for water and Ni2+ Soil hydraulic function
parameters were set to following values; residual
water content was 0.05, Van Genuchten α was
0.143 m−1, Van Genuchten n was 1.506 and Van
Genuchten l was 0.65. Water was set to be taken up at
a constant rate during the experiment. Nickel uptake
was modeled following the approach by Lombi et al.
(2001) that adds a linear component to the Michaelis-
Menten kinetics:

FM ¼ kmc

Km þ c
þ ac; ð4Þ

where FM is the root uptake rate per unit surface of
the roots (mol m−2 s−1), km is the effective rate
coefficient (mol m−2 s−1), Km is the Michaelis-
Menten’s constant (mol m−3), c is the Ni2+ concen-
tration in solution (mol m−3), and α is the slope of the
linear component (mol m−2 s−1).

Sensitivity analysis showed that the most critical
parameters were uptake rate coefficient and transpi-
ration rate (data not shown here). The Ni2+ uptake rate
coefficient, the Michaelis-Menten’s constant and the
linear component were varied randomly to yield the
observed temporal evolution of the Ni2+ distribution.
Root mean square error (RMSE) measure was used to
evaluate the simulations and the one with the smallest
RMSE was finally chosen. The Ni2+ diffusion
coefficient in free aqueous solution was set to 1.25×
10−9 m2 s−1. The dispersivity was set to 9.0×10−4 m,

b)a)

Fig. 3 A view of the rhizobox placed inside the MRI machine (a) and the root distribution pattern before the Ni2+ uptake experiment
(b). The broken lines indicate the 15 mm thick slices into which MRI signal was recorded
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which reflects the grain-size of the glass beads we
used (0.4–1.0 mm) and agrees with the typical range
of dispersivity in soils (Aggelopoulos and Tsakiroglou
2007). The initial Ni2+ concentration was 10 mg l−1.
The other parameters were taken directly from the
experiment. The glass beads were chemically inert;
therefore, no sorption isotherm was used. The grid
resolution for numerical solution was set to corre-
spond to the spatial resolution of the MRI measure-
ment, except that a finer grid was chosen in the direct
vicinity of the roots for better convergence with the
numerical solution.

Results

Temporal changes of Ni2+ distribution

Figure 3b shows the distribution pattern of roots in
the root-only compartment before the Ni2+ uptake
experiment started. The horizontal sections, separated
by the dashed lines correspond to the slices into
which the MRI signals were collected. There was a
dense layer of roots in the first two slices, but the root

density was lower in the bottom of the rhizobox. The
root mat was composed of old and young roots in all
slices. The root distribution was most homogeneous
in the 3rd, 4th and 5th slice from the top. These three
slices remained water saturated during the course of
experiment, therefore, they were chosen for calcula-
tions of T1 and Ni2+ concentration profiles.

The Ni2+ distribution maps measured at various
times after the application of Ni2+ solution are shown
in Fig. 4. Each Ni2+ distribution map represents a
pixel-wise average value of the slices 3, 4 and 5 that
were calculated from the corresponding T1 values
using the calibration curve in Fig. 2. T1 values ranged
from 1,800 ms near the root plane to slightly above
2,400 ms in the corners of the rhizobox farthest away
from the root plane (data not shown here). Compared
to the middle of the rhizobox, the corners of the
rhizobox were farthest away from the coil centre and
showed a weaker SNR and therefore considerably
higher variability in the calculated T1 and the
corresponding Ni2+ concentrations. This indicates that
the reliability of the measurement decreased with
distance from the coil centre due to a decline in SNR.
Already at the first measurement, 3 h after the start of

t = 3 hours t = 5 hours t = 11 hoursa) b) c)

Fig. 4 Horizontal two-dimensional maps of Ni2+ distribution in the root zone of Berkheya coddii 3 h (a), 5 h (b), and 11 h (c) after
Ni2+ application to the rhizobox
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the experiment (application of Ni2+ solution to the
rhizobox), a gradient in the Ni2+ concentration was
visible (Fig. 4a). The Ni2+ concentration ranged from
around 15 mg l−1 immediately adjacent to the root-
plane to slightly above 10 mg l−1 at a distance of
20 mm away from the roots on the opposite side of
the rhizobox. This indicates that the amount of Ni2+

transported to the root surface via convection was
greater than the amount of Ni2+ taken up by the roots.
The roots partially excluded the Ni2+ and the extent of
the exclusion in the middle of the root-plane was
greater than at the edges. This variability might be
related to the inhomogeneous distribution and activity
of the roots. After 5 h, the Ni2+ accumulation zone
extended to a distance of more than 20 mm away
from the root surface in the middle of the root-plane
(Fig. 4b). The Ni2+ accumulation zone extended to the
sides of the rhizobox 11 h after the experiment had
started (Fig. 4c), while the magnitude of the accumu-
lation was still highest in the middle.

Ni2+ concentration mapping at different soil water
contents

As the plants transpired water, the water level in the
rhizobox dropped and the upper part of the rhizobox
became unsaturated. With the decrease in water
content, also the SNR decreased in the upper part of
the rhizobox (mainly first and the second slice from
top). This resulted in high variability in the calculated
T1 values. T1 maps of horizontal cross-sections
through the rhizobox at the upper first slice (unsatu-
rated), the second slice (partly saturated), and the 4th
slice (saturated) are shown in Fig. 5a, b, and c,
respectively. In the unsaturated zone (Fig. 5a), the
SNR was much poorer than in the saturated zone
below. Water was the main signal-bearing source in
our system, therefore a decrease in water content
resulted in decrease in SNR. Since the main aim here
was to visualize Ni2+ concentrations close to the roots
where full water saturation was persistent during the
experiments, we did not further process the MRI data
from the unsaturated part of the rhizobox. The SNR
increased in the second slice of the rhizobox in the
transition zone between saturated and unsaturated
zone (Fig. 5b) i.e. in the zone of capillary fringe
above the water level, but the signal was considerably
lower and more heterogeneous than in the fully
saturated zone (Fig. 5c).

Modelling Ni2+ uptake

Figure 6 shows the MRI-measured and the simulated
average profiles of Ni2+ concentrations with distance
from the root plane for each measurement time. The
MRI-measured averages were taken column-wise
parallel to the root plane from the 3rd, 4th, and 5th
slices.

The best agreement between the simulated and
MRI-measured Ni2+ concentration profiles (based on
RMSE analysis) was obtained when the uptake rate
coefficient was set to 1.17×10−8 mol m−2 s−1, the
Michaelis-Menten’s constant to 2.5×10−4 mol m−3,
and the linear component to 1.05×10−9 mol m−2 s−1.
These values are well in the same order of magnitude
with the published rates for zinc and cadmium by
other hyperaccumulator plants (Lombi et al. 2001;
Zhao et al. 2006). The concentration range of Ni2+ in
solution was almost three orders of magnitude higher
than the optimized Michaelis-Menten’s constant
which shows that the Ni2+ uptake by root was mainly
passive instead of active. The simulation of the
averaged Ni2+ profile at t=3 h was the most
satisfactory (RMSE=0.20 compared to 0.26 and
0.46 for t=5 and 11 respectively). The MRI-
measured Ni2+ concentration was in good agreement
with the simulated Ni2+ profile over the whole length
from the root plane to the opposite wall. For t=5 and
11, the simulated Ni2+ concentration profiles were
slightly overestimated adjacent to the root surface and
underestimated at farther distances namely 5–15 mm
from the roots. The MRI-measured Ni2+ profiles
showed a gentler slope than the simulated ones.

Effects of various parameters on Ni2+ concentration
profile

The magnitude and the sign of the Ni2+ gradient
adjacent to the roots are essentially a function of Ni2+

concentration in solution, the rate of Ni2+ uptake by
the roots, and the transpiration rate. We performed a
sensitivity analysis by varying each one of these
parameters at a time while keeping the other param-
eters constant. Figure 7 shows how transpiration rate
affected the simulated Ni2+ concentration gradient.
The transpiration rate was reduced by 45 and 85%,
while all other parameters were kept constant.
Reduction of the transpiration by 45% eliminated
the gradient profile, while 85% reduction in transpi-
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ration resulted in a negative gradient towards the
roots.

Varying the uptake rate coefficient had similar
effects on the Ni2+ concentration profile (Fig. 8). The
Ni2+ concentration gradient became gentler and then

disappeared when the uptake rate coefficient was
increased to 2.7×10−8 and 4.95×10−7 mol m−2 s−1

respectively. Using an uptake rate coefficient of
1.62×10−6 mol m−2 s−1 resulted in Ni2+ depletion in
the rhizosphere.

Fig. 5 T1 maps at horizontal cross-sections of the rhizobox at t=11 h when the water level dropped in the rhizobox: a) 1st slice from
top where it was unsaturated, b) 2nd slice partly saturated, and c) 4th slice completely saturated
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Figure 9 shows simulated Ni2+ gradients assuming
various initial concentration of Ni2+ in soil solution.
The Ni2+ gradients were normalized by dividing by
the initial Ni2+ concentrations. Using the same input
parameters but varying the initial concentration of Ni2+,
resulted in different Ni2+ gradients. For Ni2+ initial
concentration of 1 mg l−1, the simulated accumulation
pattern was gentler than 10 mg l−1. A slight Ni2+

depletion was obtained for Ni2+ initial concentration of
0.1 mg l−1 while assuming a Ni2+ initial concentration
of 0.01 mg l−1 resulted in an exhaustion of Ni2+ in the
soil solution in the rhizosphere.

Discussion

The experimental set-up that we used here is a
compromise between a MRI-suited medium and a
realistic soil-root system. Nevertheless, MRI proved to
be useful to study the dynamics of Ni2+ in the vicinity of
the roots of hyperaccumulator plants non-destructively.
Here for the first time we obtained Ni2+ concentration
maps in the root zone of Berkheya coddii with spatial
resolution of 0.21 mm and temporal resolution of only
minutes. There is a gap of knowledge about the uptake
behaviour of hyperaccumulator plants. There is also
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desire for a non-destructive non-invasive technique to
study rhizosphere processes. Therefore, MRI can be
used to study the uptake behaviour of hyperaccumulator
plants. However there are several limitations in applying
MRI to a real soil-root system. The porous medium that
was used here is chemically inert, while the real soil-root
system requires accounting for interactions between the
ions in the soil solution and the solid phase. MRI was
proved to suffer from fading of SNR in unsaturated
conditions. The resulting SNR from the unsaturated
zone of the rhizobox showed a considerable degree of
random variability in unsaturated conditions, represent-
ing variations of water content but also water distribu-
tion in the pore space. Our images had a spatial
resolution of 0.21×0.21 mm, a slice thickness of
15 mm, and therefore, a voxel size of 0.21×0.21×
15 mm. Considering the size of the glass beads (0.4–
1.0 mm), the voxel’s space was occupied by a random
combination of beads and pore space that affects the
relaxation behaviour and SNR. This holds true for even
a completely water-saturated porous medium. Since
each voxel contains a specific combination of beads,
pore space and water content, it returns a specific SNR,
which is different from the neighbouring voxels. This
could be an advantage or disadvantage depending on the
type of the information that is desired. For example, it
clearly reflects the heterogeneity of the system. Howev-
er, it makes any averaging of the MRI signal, T1 or
concentrations along a profile deviating. Therefore, the
voxel size should be optimised based on the aims of the
study. Additionally, the variability of water saturation
of the intra-grain pore space might affect the T1

relaxation behaviour and SNR (Fig. 5). To correct for
this, separate calibration curves would be needed for
given water contents and possibly also for different
water distribution patterns in the pore space. Another
shortcoming is the detection limit of MRI for Ni2+

concentration. We could resolve Ni2+ concentrations
down to 1 mg l−1. However, this could be improved at
the cost of measurement time and spatial resolution.

The increase in Ni2+ concentration towards the root
surface (Fig. 4) means that Ni2+ uptake by roots was
not limited by diffusion at these relatively high
soluble Ni2+ concentrations. Our result suggests that
Berkheya coddii can hyperaccumulate Ni in soils with
high Ni concentration in soil solution without actively
solubilizing Ni in the root zone. Therefore, the Ni
diffusion in such soils is not the limiting factor for
phytoremediation or phytomining purposes. This
might be the case in serpentine soils, where Berkheya
coddii is native.

Our simulation results showed that metal concen-
tration gradient in the rhizosphere is very dynamic
and is controlled by plant’s transpiration rate, metal
uptake rate and the metal concentration in the soil
solution (Figs. 7, 8, and 9). Diurnal change of
transpiration is expected to affect the gradients of
metals in the rhizosphere. For example for metals and
ions that are abundant in soil solution, a positive
gradient might develop at the peak of transpiration
rate in midday, while it may disappear by reduction in
transpiration in the evenings. Metal gradients in the
rhizosphere of various plant species with various
uptake properties might be different. Plants with
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lower metal uptake-rate are more likely to experience
accumulation of metal near their roots.

The total Nickel extractable by 1 M ammonium
acetate was found to reach concentrations up to
12 mg l−1 in serpentine soils in Berkheya coddii’s
native environment (Robinson et al. 1997), while it is
usually present in much lower concentrations in other
soils. The metal concentration profile in the rhizo-
sphere of the plants growing in highly contaminated
soils might differ from those in less contaminated
soils. Figure 9 illustrates that an initial concentration
of 10 mg l−1 resulted in an accumulation pattern,
while an initial concentration of less than 0.1 mg l−1

resulted in an extensive depletion of Ni2+ adjacent to
the roots. This shows that a depletion of Ni2+ is
expected at low dissolved concentrations of Ni2+ in
soil solution, if the uptake rate stays unchanged.
However, the interactions between the sorbed and
soluble Ni in soil needs to be considered. Puschenreiter
et al. (2005) studied Ni in the rhizosphere of the
hyperaccumulator Thlaspi goesingense and reported
an accumulation of Ni in soil solution at the root
surface but a depletion of labile Ni towards the roots.
Their results suggests that hyperaccumulation of Ni
(at much lower Ni concentrations in soil solution than
in our case) is influenced by the interactions between
Ni in soil solution and the soil solid-phase. They also
highlighted the importance of root-induced changes in
the rhizosphere. Local changes in dissolved organic
matter and pH due to root exudates can influence the
speciation of metals in the soil solution and their
mobilisation from the soil solid-phase. These inter-
actions were not accounted for here, neither in the
MRI measurements nor in the modelling.

In conclusion, this study shows that even though
the real soil-root system was to some extent compro-
mised, combination of MRI and numerical modelling
could provide some valuable insight into the dynamic
of metals in the root-soil interface. Ni uptake by
Berkheya coddii was shown to be passive and Ni was
partly excluded from the roots and accumulated in the
rhizosphere at the concentration range that was used
here. The accumulation or depletion of Ni2+ in the
root zone of hyperaccumulator plants were demon-
strated to be a delicate function of sensitive parame-
ters such as transpiration rate, Ni2+ uptake rate and
initial Ni2+ concentration in the soil solution. Our
simulation results showed that while decreasing the
Ni2+ uptake rate coefficient resulted in accumulation

of Ni2+ in the rhizosphere, a depletion pattern was
developed when the initial Ni2+ or the transpiration
rate was reduced.
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