87 research outputs found

    The chemical structure of the very young starless core L1521E

    Get PDF
    L1521E is a dense starless core in Taurus that was found to have relatively low molecular depletion by earlier studies, thus suggesting a recent formation. We aim to characterize the chemical structure of L1521E and compare it to the more evolved L1544 pre-stellar core. We have obtained \sim2.5×\times2.5 arcminute maps toward L1521E using the IRAM-30m telescope in transitions of various species. We derived abundances for the species and compared them to those obtained toward L1544. We estimated CO depletion factors. Similarly to L1544, cc-C3_3H2_2 and CH3_3OH peak at different positions. Most species peak toward the cc-C3_3H2_2 peak. The CO depletion factor derived toward the HerschelHerschel dust peak is 4.3±\pm1.6, which is about a factor of three lower than that toward L1544. The abundances of sulfur-bearing molecules are higher toward L1521E than toward L1544 by factors of \sim2-20. The abundance of methanol is similar toward the two cores. The higher abundances of sulfur-bearing species toward L1521E than toward L1544 suggest that significant sulfur depletion takes place during the dynamical evolution of dense cores, from the starless to pre-stellar stage. The CO depletion factor measured toward L1521E suggests that CO is more depleted than previously found. Similar CH3_3OH abundances between L1521E and L1544 hint that methanol is forming at specific physical conditions in Taurus, characterized by densities of a few ×\times104^4 cm3^{-3} and NN(H2_2)\gtrsim1022^{22} cm2^{-2}, when CO starts to catastrophically freeze-out, while water can still be significantly photodissociated, so that the surfaces of dust grains become rich in solid CO and CH3_3OH, as already found toward L1544. Methanol can thus provide selective crucial information about the transition region between dense cores and the surrounding parent cloud.Comment: Accepted for publication in A&A, abstract abridge

    Collisional excitation of NH(3{\Sigma}-) by Ar: A new ab initio 3D potential energy surface and scattering calculations

    Full text link
    Collisional excitation of light hydrides is important to fully understand the complex chemical and physical processes of atmospheric and astrophysical environments. Here, we focus on the NH(X3{\Sigma}-)-Ar van der Waals system. First, we have calculated a new three-dimensional Potential Energy Surface (PES), which explicitly includes the NH bond vibration. We have carried out the ab initio calculations of the PES employing the open-shell single- and double-excitation couple cluster method with noniterative perturbational treatment of the triple excitations. To achieve a better accuracy, we have first obtained the energies using the augmented correlation-consistent aug-cc-pVXZ (X = T, Q, 5) basis sets and then we have extrapolated the final values to the complete basis set limit. We have also studied the collisional excitation of NH(X3{\Sigma}-)-Ar at the close-coupling level, employing our new PES. We calculated collisional excitation cross sections of the fine-structure levels of NH by Ar for energies up to 3000 cm-1 . After thermal average of the cross sections, we have then obtained the rate coefficients for temperatures up to 350 K. The propensity rules between the fine-structure levels are in good agreement with those of similar collisional systems, even though they are not as strong and pronounced as for lighter systems, such as NH-He. The final theoretical values are also compared with the few available experimental data

    Distribution of methanol and cyclopropenylidene around starless cores

    Get PDF
    Context. The spatial distribution of molecules around starless cores is a powerful tool for studying the physics and chemistry governing the earliest stages of star formation. Aims. Our aim is to study the chemical differentiation in starless cores to determine the influence of large-scale effects on the spatial distribution of molecules within the cores. Furthermore, we want to put observational constraints on the mechanisms responsible in starless cores for the desorption of methanol from the surface of dust grains where it is efficiently produced. Methods. We mapped methanol, CH3OH, and cyclopropenylidene, c-C3H2, with the IRAM 30m telescope in the 3 mm band towards six starless cores embedded in different environments, and in different evolutionary stages. Furthermore, we searched for correlations among physical properties of the cores and the methanol distribution. Results. From our maps we can infer that the chemical segregation between CH3OH and c-C3H2 is driven by uneven illumination from the interstellar radiation field (ISRF). The side of the core that is more illuminated has more C atoms in the gas-phase and the formation of carbon-chain molecules like c-C3H2 is enhanced. Instead, on the side that is less exposed to the ISRF the C atoms are mostly locked in carbon monoxide, CO, the precursor of methanol. Conclusions. We conclude that large-scale effects have a direct impact on the chemical segregation that we can observe at core scale. However, the non-thermal mechanisms responsible for the desorption of methanol in starless cores do not show any dependency on the H2 column density at the methanol peak.Comment: Accepted for publication in A&

    Design of a Multi-Wavelength Fiber Laser Based on Tm:Er:Yb:Ho Co-Doped Germanate Glass

    Get PDF
    In this article, for the first time, an efficient multi-wavelength fiber laser based on a Tm:Er:Yb:Ho co-doped germanate glass, optically pumped at 980 nm wavelength and simultaneously emitting at 1550 nm, 1800 nm and 2050 nm wavelengths, is designed and optimized. An exhaustive model, taking into account the energy transfer phenomena between different rare earths, is developed. The device behavior is investigated by means of several parametric sweeps with respect to the input pump power, the fiber length, the dopant concentrations and the output mirrors reflectivities. Four optimal concentrations have been found by means of a home-made computer code based on particle swarm optimization (PSO) approach, allowing a global solution search. These concentrations allow levels of output powers very close to each other, equal to 20 mW pmpm 0.1% at 1550 nm, 1800 nm and 2050 nm, respectively. These results predict the possibility of tailoring the dopant concentrations in order to construct broadband optical sources with similar emission powers at multiple wavelengths and broadband amplifiers

    Mid-IR tunable CW and passively Q-switched laser operation of Dy-doped fluoride fiber

    Get PDF
    We report a comprehensive characterization of tunable continuous-wave (CW) and passive Q-switching laser performance of Dy-doped zirconium fluoride fiber emitting around 3 mu m. The in-band pumped CW laser operation is investigated for pump wavelengths varying from 2.7 mu m to 2.825 mu m, for fiber lengths ranging from 0.4 m to 2 m, and for output coupling efficiency from 10% to 50%, leading to a maximum laser slope efficiency of 44% and a tuning range larger than 300 nm. With Findlay-Clay analysis and Rigrod analyses, optimal cavity parameters are retrieved, paving the way for further optimizations in performance. The passively Q-switched laser operation of Dy-doped fluoride fiber is achieved employing a semiconductor saturable absorber mirror for the first time, demonstrating a stable operation with a minimum pulse duration of 580 ns, a highest repetition frequency of 103 kHz and a pulse energy up to 300 nJ

    Metallo-Dielectric Multilayer Structure for Lactose Malabsorption Diagnosis through H2 Breath Test

    Full text link
    A metallo-dielectric multilayer structure is proposed as a novel approach to the analysis of lactose malabsorption. When lactose intolerance occurs, the bacterial overgrowth in the intestine causes an increased spontaneous emission of H2 in the human breath. By monitoring the changes in the optical properties of a multilayer palladium-polymeric structure, one is able to detect the patient's disease and the level of lactose malabsorption with high sensitivity and rapid response

    Distribution of methanol and cyclopropenylidene around starless cores

    Get PDF
    Context. The spatial distribution of molecules around starless cores is a powerful tool for studying the physics and chemistry governing the earliest stages of star formation. Aims: Our aim is to study the chemical differentiation in starless cores to determine the influence of large-scale effects on the spatial distribution of molecules within the cores. Furthermore, we want to put observational constraints on the mechanisms responsible in starless cores for the desorption of methanol from the surface of dust grains where it is efficiently produced. Methods: We mapped methanol, CH3OH, and cyclopropenylidene, c-C3H2, with the IRAM 30 m telescope in the 3 mm band towards six starless cores embedded in different environments, and in different evolutionary stages. Furthermore, we searched for correlations among physical properties of the cores and the methanol distribution. Results: From our maps we can infer that the chemical segregation between CH3OH and c-C3H2 is driven by uneven illumination from the interstellar radiation field (ISRF). The side of the core that is more illuminated has more C atoms in the gas-phase and the formation of carbon-chain molecules like c-C3H2 is enhanced. Instead, on the side that is less exposed to the ISRF the C atoms are mostly locked in carbon monoxide, CO, the precursor of methanol. Conclusions: We conclude that large-scale effects have a direct impact on the chemical segregation that we can observe at core scale. However, the non-thermal mechanisms responsible for the desorption of methanol in starless cores do not show any dependency on the H2 column density at the methanol peak. The reduced datacubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/643/A60 Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain)

    High sensitivity photonic crystal pressure sensor

    Get PDF
    A two-dimensional photonic crystal microcavity coupled with a waveguide is proposed to realise a high sensitive force sensor, designed on a GaAs membrane. A theoretical model is developed to evaluate the change of the refractive index induced by the application of the force onto a sensing surface. A linear calibration curve is obtained relating the resonant drop position to the applied force

    Design of an Antipodal Vivaldi Antenna Focusing on Constructional Aspects

    Get PDF
    Abstract This paper presents an Antipodal Vivaldi Antenna (AVA) design, focusing on its constructional aspects. The main features analysed are the connector attachment structure and the introduction of a polytetrafluoroethylene (PTFE) part that supports the antenna laminate. Issues related to dielectric penetration by milling tools are also addressed. The proposed AVA was manufactured through a low-cost prototyping process and tested, achieving an operational bandwidth from 5 to 18 GHz for a reflection coefficient less than −10 dB and an average gain of 6.23 dBi. The prototype meets all design requirements, which shows the viability of the developed radiator

    Wide-band optical field concentrator for low-index core propagation

    Get PDF
    We propose a novel chirped structure consisting of a low index polymer core bounded by modulated multilayer claddings, to realize an optical field concentrator with virtually zero propagation losses in a wide spectral range, independent of wave polarization. In spite of the absence of the total internal reflection mechanism, properly designed multilayer claddings ensure the achievement of unitary transmittance in a wide spectral range, including the widely used wavelengths for optical communications. Several cladding geometries obtained by varying the thicknesses of the cladding layers are reported and discussed.Comment: submitted to the Journal of the European Optical Societ
    corecore