111 research outputs found

    Analysis of the performance of under-sleeper pads in highspeed line transition zones

    Full text link
    [EN] In many high-speed railway lines, the zones between embankments and structures may present some discontinuities, in terms of track geometry and track stiffness, which may create discomfort for passengers, induce deterioration of track and vehicle materials and even raise the risk of derailment to dangerous levels. In the attempt to attenuate the consequences of such problems, some solutions pointing at progressively changing the vertical stiffness in the railway track have been tested, such as transition zones or pads placed either between the rails and the sleepers or under the sleepers. The contribution of under-sleeper pads in transition regions and their effect on the railway infrastructure is specifically analysed in the present paper. The results obtained are of interest since they provide useful information for railway managers on infrastructure design and justify the need to implement such transition ones.Insa Franco, R.; Salvador Zuriaga, P.; Inarejos Mesa, J.; Medina González, L. (2014). Analysis of the performance of under-sleeper pads in highspeed line transition zones. Proceedings of the Institution of Civil Engineers - Transport. 167(2):63-77. doi:10.1680/tran.11.00033S6377167

    Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3

    Get PDF
    Background: Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results: Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion: We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution

    Binding site number variation and high-affinity binding consensus of Myb-SANT-like transcription factor Adf-1 in Drosophilidae

    Get PDF
    There is a growing interest in the evolution of transcription factor binding sites and corresponding functional change of transcriptional regulation. In this context, we have examined the structural changes of the ADF-1 binding sites at the Adh promoters of Drosophila funebris and D. virilis. We detected an expanded footprinted region in D. funebris that contains various adjacent binding sites with different binding affinities. ADF-1 was described to direct sequence-specific DNA binding to sites consisting of the multiple trinucleotide repeat . The ADF-1 recognition sites with high binding affinity differ from this trinucleotide repeat consensus sequence and a new consensus sequence is proposed for the high-affinity ADF-1 binding sites. In vitro transcription experiments with the D. funebris and D. virilis ADF-1 binding regions revealed that stronger ADF-1 binding to the expanded D. funebris ADF-1 binding region only moderately lead to increased transcriptional activity of the Adh gene. The potential of this regional expansion is discussed in the context of different ADF-1 cellular concentrations and maintenance of the ADF-1 stimulus. Altogether, evolutionary change of ADF-1 binding regions involves both, rearrangements of complex binding site cluster and also nucleotide substitutions within sites that lead to different binding affinities

    Breast Cancer Stem-Like Cells Are Inhibited by a Non-Toxic Aryl Hydrocarbon Receptor Agonist

    Get PDF
    Cancer stem cells (CSCs) have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs) by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH). CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs.We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231) mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR) agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation). It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast. Thus, the anti-cancer effects of tranilast are AHR dependent.We show that tranilast is an AHR agonist with inhibitory effects on breast CSCs. It is effective against CSCs of triple-negative breast cancer cells selected for anti-cancer drug resistance. These results suggest it might find applications in the treatment of breast cancer

    The celiac ganglion modulates LH-induced inhibition of androstenedione release in late pregnant rat ovaries

    Get PDF
    BACKGROUND: Although the control of ovarian production of steroid hormones is mainly of endocrine nature, there is increasing evidence that the nervous system also influences ovarian steroidogenic output. The purpose of this work was to study whether the celiac ganglion modulates, via the superior ovarian nerve, the anti-steroidogenic effect of LH in the rat ovary. Using mid- and late-pregnant rats, we set up to study: 1) the influence of the noradrenergic stimulation of the celiac ganglion on the ovarian production of the luteotropic hormone androstenedione; 2) the modulatory effect of noradrenaline at the celiac ganglion on the anti-steroidogenic effect of LH in the ovary; and 3) the involvement of catecholaminergic neurotransmitters released in the ovary upon the combination of noradrenergic stimulation of the celiac ganglion and LH treatment of the ovary. METHODS: The ex vivo celiac ganglion-superior ovarian nerve-ovary integrated system was used. This model allows studying in vitro how direct neural connections from the celiac ganglion regulate ovarian steroidogenic output. The system was incubated in buffer solution with the ganglion and the ovary located in different compartments and linked by the superior ovarian nerve. Three experiments were designed with the addition of: 1) noradrenaline in the ganglion compartment; 2) LH in the ovarian compartment; and 3) noradrenaline and LH in the ganglion and ovarian compartments, respectively. Rats of 15, 19, 20 and 21 days of pregnancy were used, and, as an end point, the concentration of the luteotropic hormone androstenedione was measured in the ovarian compartment by RIA at various times of incubation. For some of the experimental paradigms the concentration of various catecholamines (dihydroxyphenylalanine, dopamine, noradrenaline and adrenaline) was also measured in the ovarian compartment by HPLC. RESULTS: The most relevant result concerning the action of noradrenaline in the celiac ganglion was found on day 21 of pregnancy resulting in the inhibition of androstenedione release from the ovarian compartment. In addition on day 15 of pregnancy, LH placed in the ovarian compartment led to an inhibition of the release of androstenedione, and this inhibitory effect was further reinforced by the joint action of noradrenaline in the celiac ganglion and LH in the ovary. The levels of catecholamines in the ovarian compartment showed differences among the experiments; of significance, the joint treatment of noradrenaline in the celiac ganglion and LH in the ovary resulted in a remarkable increase in the ovarian levels of noradrenaline and adrenaline when compared to the effect achieved by either one of the compounds added alone. CONCLUSION: Our results demonstrate that the noradrenergic stimulation of the celiac ganglion reinforces the LH-induced inhibition of androstenedione production by the ovary of late pregnant rats, and that this effect is associated with marked changes in the release of catecholamines in the ovary

    Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains

    Get PDF
    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences

    Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Although the pathogenesis of MS remains unknown, it is widely regarded as an autoimmune disease mediated by T-lymphocytes directed against myelin proteins and/or other oligodendrocyte epitopes.</p> <p>Methods</p> <p>In this study we investigated the gene expression profiles of peripheral blood cells from patients with RRMS during the relapse and the remission phases utilizing gene microarray technology. Dysregulated genes encoded in regions associated with MS susceptibility from genomic screens or previous trancriptomic studies were identified. The proximal promoter region polymorphisms of two genes were tested for association with disease and expression level.</p> <p>Results</p> <p>Distinct sets of dysregulated genes during the relapse and remission phases were identified including genes involved in apoptosis and inflammation. Three of these dysregulated genes have been previously implicated with MS susceptibility in genomic screens: TGFβ1, CD58 and DBC1. TGFβ1 has one common SNP in the proximal promoter: -508 T>C (rs1800469). Genotyping two Australian trio sets (total 620 families) found a trend for over-transmission of the T allele in MS in females (p < 0.13). Upregulation of CD58 and DBC1 in remission is consistent with their putative roles in promoting regulatory T cells and reducing cell proliferation, respectively. A fourth gene, ALOX5, is consistently found over-expressed in MS. Two common genetic variants were confirmed in the ALOX5 putatve promoter: -557 T>C (rs12762303) and a 6 bp tandem repeat polymorphism (GGGCGG) between position -147 and -176; but no evidence for transmission distortion found.</p> <p>Conclusion</p> <p>The dysregulation of these genes tags their metabolic pathways for further investigation for potential therapeutic intervention.</p

    Skin Electroporation: Effects on Transgene Expression, DNA Persistence and Local Tissue Environment

    Get PDF
    BACKGROUND: Electrical pulses have been used to enhance uptake of molecules into living cells for decades. This technique, often referred to as electroporation, has become an increasingly popular method to enhance in vivo DNA delivery for both gene therapy applications as well as for delivery of vaccines against both infectious diseases and cancer. In vivo electrovaccination (gene delivery followed by electroporation) is currently being investigated in several clinical trials, including DNA delivery to healthy volunteers. However, the mode of action at molecular level is not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates intradermal DNA electrovaccination in detail and describes the effects on expression of the vaccine antigen, plasmid persistence and the local tissue environment. Gene profiling of the vaccination site showed that the combination of DNA and electroporation induced a significant up-regulation of pro-inflammatory genes. In vivo imaging of luciferase activity after electrovaccination demonstrated a rapid onset (minutes) and a long duration (months) of transgene expression. However, when the more immunogenic prostate specific antigen (PSA) was co-administered, PSA-specific T cells were induced and concurrently the luciferase expression became undetectable. Electroporation did not affect the long-term persistence of the PSA-expressing plasmid. CONCLUSIONS/SIGNIFICANCE: This study provides important insights to how DNA delivery by intradermal electrovaccination affects the local immunological responses of the skin, transgene expression and clearance of the plasmid. As the described vaccination approach is currently being evaluated in clinical trials, the data provided will be of high significance

    A Multicassette Gateway Vector Set for High Throughput and Comparative Analyses in Ciona and Vertebrate Embryos

    Get PDF
    BACKGROUND: The past few years have seen a vast increase in the amount of genomic data available for a growing number of taxa, including sets of full length cDNA clones and cis-regulatory sequences. Large scale cross-species comparisons of protein function and cis-regulatory sequences may help to understand the emergence of specific traits during evolution. PRINCIPAL FINDINGS: To facilitate such comparisons, we developed a Gateway compatible vector set, which can be used to systematically dissect cis-regulatory sequences, and overexpress wild type or tagged proteins in a variety of chordate systems. It was developed and first characterised in the embryos of the ascidian Ciona intestinalis, in which large scale analyses are easier to perform than in vertebrates, owing to the very efficient embryo electroporation protocol available in this organism. Its use was then extended to fish embryos and cultured mammalian cells. CONCLUSION: This versatile vector set opens the way to the mid- to large-scale comparative analyses of protein function and cis-regulatory sequences across chordate evolution. A complete user manual is provided as supplemental material

    A Database of Wing Diversity in the Hawaiian Drosophila

    Get PDF
    Background. Within genus Drosophila, the endemic Hawaiian species offer some of the most dramatic examples of morphological and behavioral evolution. The advent of the Drosophila grimshawi genome sequence permits genes of interest to be readily cloned from any of the hundreds of species of Hawaiian Drosophila, offering a powerful comparative approach to defining molecular mechanisms of species evolution. A key step in this process is to survey the Hawaiian flies for characters whose variation can be associated with specific candidate genes. The wings provide an attractive target for such studies: Wings are essentially two dimensional, and genes controlling wing shape, vein specification, pigment production, and pigment pattern evolution have all been identified in Drosophila. Methodology/Principal Findings. We present a photographic database of over 180 mounted, adult wings from 73 species of Hawaiian Drosophila. The image collection, available at FlyBase.org, includes 53 of the 112 known species of picture wing\u27\u27 Drosophila, and several species from each of the other major Hawaiian groups, including the modified mouthparts, modified tarsus, antopocerus, and haleakalae (fungus feeder) groups. Direct image comparisons show that major wing shape changes can occur even between closely related species, and that pigment pattern elements can vary independently of each other. Among the 30 species closest to grimshawi, diverse visual effects are achieved by altering a basic pattern of seven wing spots. Finally, we document major pattern variations within species, which appear to result from reduced diffusion of pigment precursors through the wing blade. Conclusions/Significance. The database highlights the striking variation in size, shape, venation, and pigmentation in Hawaiian Drosophila, despite their generally low levels of DNA sequence divergence. In several independent lineages, highly complex patterns are derived from simple ones. These lineages offer a promising model system to study the evolution of complexity
    corecore