233 research outputs found

    Cost-efficient one-part alkali-activated mortars with low global warming potential for floor heating systems applications

    Get PDF
    Increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials mitigates heat loss in buildings, therefore minimising heat energy needs. In recent years, several papers were published on the subject of foam alkali-activated cements with enhanced thermal conductivity. However, on those papers cost analysis was strangely avoided. This paper presents experimental results on one-part alkali-activated cements. It also includes global warming potential assessment and cost analysis. Foam one-part alkali-activated cements cost simulations considering two carbon dioxide social costs scenarios are also included. The results show that one-part alkali-activated cements mixtures based on 26%OPC + 58.3%FA + 8%CS + 7.7%CH and 3.5% hydrogen peroxide constitute a promising cost-efficient (67 euro/m3), thermal insulation solution for floor heating systems. This mixture presents a low global warming potential of 443 KgCO2eq/m3. The results confirm that in both carbon dioxide social cost scenarios the mixture 26 OPC + 58.3 FA + 8 CS + 7.7 CH with 3.5% hydrogen peroxide foaming agent is still the most cost efficient

    Evolution of phase assemblage of blended magnesium potassium phosphate cement binders at 200 degrees and 1000 degrees C

    Get PDF
    The fire performance of magnesium potassium phosphate cement (MKPC) binders blended with fly ash (FA) and ground granulated blast furnace slag (GBFS) was investigated up to 1000°C using X-ray diffraction, thermogravimetric analysis and SEM techniques. The FA/MKPC and GBFS/MKPC binders dehydrate above 200°C to form amorphous KMgPO4, concurrent with volumetric and mass changes. Above 1000°C, additional crystalline phases were formed and microstructural changes occurred, although no cracking or spalling of the samples was observed. These results indicate that FA/MKPC and GBFS/MKPC binders are expected to have satisfactory fire performance under the fire scenario conditions relevant to the operation of a UK or other geological disposal facility

    Evaluation of activated high volume fly ash systems using Na2SO4, lime and quicklime in mortars with high loss on ignition fly ashes

    Get PDF
    In general, concretes made with blended Portland cement containing high volumes of fly ash provide an alternative to conventional Portland cement concrete to enable carbon footprint reduction. This study evaluates the chemical activation of four fly ashes in blends with Portland cement, by assessing their effects on hydration and compressive strength. In this study, a sieving process is used to regulate the fly ash composition, which has an effect in the chemistry and reaction of the mix. The results show the importance of the amorphous content of the fly ash with respect to achieving a high compressive strength. The effect of sodium sulfate, added as an activator, is significant in terms of compressive strength at early age for two of the fly ashes studied; in this case, the parameter used to correlate with the compressive strength evolution is the amount of portlandite consumed through pozzolanic reactions. However, sodium sulfate does not have the same effect on fly ashes with a high amount of Fe2O3, in which portlandite consumption is much lower

    Aberrant visual pathway development in albinism: from retina to cortex

    Get PDF
    Albinism refers to a group of genetic abnormalities in melanogenesis that are associated neuronal misrouting through the optic chiasm. Previous imaging studies have shown structural alterations at different points along the visual pathway of people with albinism (PWA) including foveal hypoplasia, optic nerve and chiasm size alterations and visual cortex reorganisation, but fail to provide a holistic in-vivo characterisation of the visual neurodevelopmental alterations from retina to visual cortex. We perform quantitative assessment of visual pathway structure and function in 23 PWA and 20 matched controls using optical coherence tomography (OCT), volumetric magnetic resonance imaging (MRI), diffusion tensor imaging and visual evoked potentials (VEP). PWA had a higher streamline decussation index (percentage of total tractography streamlines decussating at the chiasm) compared to controls (Z=-2.24, p=0.025), and streamline decussation index correlated weakly significantly with inter-hemispheric asymmetry measured using VEP (r=0.484, p=0.042). For PWA, a significant correlation was found between foveal development index and total number of streamlines (r=0.662, p less than 0.001). Optic nerve (p=0.001) and tract (p=0.010) width, and chiasm width (P less than 0.001), area (p=0.006) and volume (p=0.005), were significantly smaller in PWA compared to controls. Significant positive correlations were found between peri-papillary retinal nerve fibre layer thickness and optic nerve (r=0.642, p less than 0.001) and tract (r=0.663, p less than 0.001) width. Occipital pole cortical thickness was 6.88% higher (Z=-4.10, p less than 0.001) in PWA and was related to anterior visual pathway structures including foveal retinal pigment epithelium complex thickness (r=-0.579, p=0.005), optic disc (r=0.478, p=0.021) and rim areas (r=0.597, p=0.003). We were unable to demonstrate a significant relationship between OCT-derived foveal or optic nerve measures and MRI-derived chiasm size or streamline decussation index. Non-invasive imaging techniques demonstrate aberrant development throughout the visual pathways of PWA compared to controls. Our novel tractographic demonstration of altered chiasmatic decussation in PWA corresponds to VEP measured cortical asymmetry and is consistent with chiasmatic misrouting in albinism. We also demonstrate a significant relationship between retinal pigment epithelium and visual cortex thickness indicating that retinal pigmentation defects in albinism lead to downstream structural reorganisation of the visual cortex

    Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator

    Get PDF
    An alkali-activated slag cement produced with a blend of sodium carbonate/sodium silicate activator was characterised. This binder hardened within 12 h and achieved a compressive strength of 20 MPa after 24 h of curing under ambient conditions, which is associated with the formation of an aluminium substituted calcium silicate hydrate as the main reaction product. Carbonates including pirssonite, vaterite, aragonite and calcite were identified along with the zeolites hydroxysodalite and analcime at early times of reaction. The partial substitution of sodium carbonate by sodium silicate reduces the concentration of carbonate ions in the pore solution, increasing the alkalinity of the system compared with a solely carbonate-activated paste, accelerating the kinetics of reaction and supplying additional silicate species to react with the calcium dissolving from the slag as the reaction proceeds. These results demonstrate that this blend of activators can be used effectively for the production of high-strength alkali-activated slag cements, with a microstructure comparable to what has been identified in aged sodium-carbonate-activated slag cements but without the extended setting time reaction usually identified when using this salt as an alkali activator

    Gaseous carbonation of cementitious backfill for geological disposal of radioactive waste: Nirex Reference Vault Backfill

    Get PDF
    The ability of Nirex Reference Vault Backfill (NRVB), a cement backfill material, to capture carbon dioxide from Intermediate Level Radioactive waste packages after repository backfilling, has been assessed. Large-scale trials assessed the physical and chemical reaction of carbon dioxide with the hardened backfill grout. A carbonation front, radial in nature, was observed extending into the grout and three distinct regions were identified in the hardened grouts. A carbonated region, a carbonation front, and a partially carbonated zone were discerned. Potassium, and to a lesser extent sodium, were concentrated in the carbonated region just behind of the main reaction front. The area just ahead of the carbonation front was enriched in both sulphur and aluminium, while sulphur was found to be depleted from the carbonated material behind the main reaction front. Within the main carbonated region, virtually all of the hydrated cement phases were found to be carbonated, and carbonation extended throughout the grout, even within material indicated by phenolphthalein solution to be uncarbonated. Importantly, carbonation was observed to impact both the mineral assemblage and porosity of the cement backfill; it is therefore important to understand these characteristics in terms of the long term evolution of NRVB and its groundwater buffering safety function within the geological disposal facility near-field

    Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA)

    Full text link
    Alkali-activated binders are the new trend in building construction studies due their good mechanical properties and environmental advantages. These type of binders are obtained by a mixing of a solid precursor with an activating solution. In this study, the influence of sugar cane straw ash (SCSA) obtained from an auto-combustion process on blast-furnace slag (BFS) based alkali-activated binders was assessed as solid precursor. The studied proportions of BFS/SCSA were 100/0 (control), 85/15, 75/25, 67/33 and 50/50 (by mass). Regarding to the activating solutions, three different mixtures were used: only NaOH (8 mol kg1 Na+ ) and two different combinations of NaOH with sodium silicate (8 mol kg1 Na+ and SiO2/Na2O molar ratios of 0.50 and 0.75). The water/binder was maintained constant. To assess the influence of SCSA on BFS-alkali activated binders, mortars were evaluated in terms of compressive strength (3 90 days curing time at room temperature and 3 days at 65 C); and pastes were studied to justify these results by means of thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The presence of SCSA in the binder greatly improved the compressive strength when compared to the control BFS mortars, reaching values higher than 50 MPa after 90 days. SCSA/BFS samples activated with sodium hydroxide yielded similar compressive strength values to those obtained for BFS mortars activated with sodium silicate. In the new binders, the partial replacement of BFS, the total replacement of sodium silicate solution and a new way of valorizing sugar cane straw enhanced sustainability.The authors would like to thanks to CNPq processo no. 401724/2013-1 and the "Ministerio de Education, Cultura y Deporte" of Spain ("Cooperacion Interuniversitaria" program with Brazil PHB-2011-0016-PC). Thanks are also given to the Electron Microscopy Service of the Universitat Politecnica de Valencia.Moraes, J.; Mitsuuchi Tashima, M.; Akasaki, JL.; Pinheiro Melges, JL.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Soriano Martínez, L.... (2016). Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA). Construction and Building Materials. 124:148-154. https://doi.org/10.1016/j.conbuildmat.2016.07.090S14815412

    Role of microstructure and surface defects on the dissolution kinetics of CeO2, a UO2 fuel analogue.

    Get PDF
    The release of radionuclides from spent fuel in a geological disposal facility is controlled by the surface mediated dissolution of UO2 in groundwater. In this study we investigate the influence of reactive surface sites on the dissolution of a synthesised CeO2 analogue for UO2 fuel. Dissolution was performed on: CeO2 annealed at high temperature, which eliminated intrinsic surface defects (point defects and dislocations); CeO2-x annealed in inert and reducing atmospheres to induce oxygen vacancy defects; and on crushed CeO2 particles of different size fractions. BET surface area measurements were used as an indicator of reactive surface site concentration. Cerium stoichiometry, determined using X-ray Photoelectron Spectroscopy (XPS) and supported by X-ray Diffraction (XRD) analysis, was used to determine oxygen vacancy concentration. Upon dissolution in nitric acid medium at 90°C, a quantifiable relationship was established between the concentration of high energy surface sites and CeO2 dissolution rate; the greater the proportion of intrinsic defects and oxygen vacancies, the higher the dissolution rate. Dissolution of oxygen vacancy-containing CeO2-x gave rise to rates that were an order of magnitude greater than for CeO2 with fewer oxygen vacancies. While enhanced solubility of Ce3+ influenced the dissolution, it was shown that replacement of vacancy sites by oxygen significantly affected the dissolution mechanism due to changes in the lattice volume and strain upon dissolution and concurrent grain boundary decohesion. These results highlight the significant influence of defect sites and grain boundaries on the dissolution kinetics of UO2 fuel analogues and reduce uncertainty in the long-term performance of spent fuel in geological disposal

    Thermodynamic modelling of alkali-activated slag cements

    Get PDF
    This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH_ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg-Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na2SiO3-activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na2SiO3-activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na2CO3-activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

    Real-Time High-Resolution X-ray Imaging and Nuclear Magnetic Resonance Study of the Hydration of Pure and Na-Doped C 3

    Full text link
    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C{sub 3}A or 3CaO {center_dot} Al{sub 2}O{sub 3}) and Na-doped tricalcium aluminate (orthorhombic C{sub 3}A or Na{sub 2}Ca{sub 8}Al{sub 6}O{sub 18}), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by {sup 27}Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C{sub 3}A hydration during the early stages. There are differences in the hydration mechanism between the two types of C{sub 3}A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C{sub 3}A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C{sub 3}A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping
    corecore