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ABSTRACT 

In general, concretes made with blended Portland cement containing high volumes of fly 

ash provide an alternative to conventional Portland cement concrete to enable carbon 

footprint reduction. This study evaluates the chemical activation of four fly ashes in blends 

with Portland cement, by assessing their effects on hydration and compressive strength. In 

this study, a sieving process is used to regulate the fly ash composition, which has an 

effect in the chemistry and reaction of the mix. The results show the importance of the 

amorphous content of the fly ash with respect to achieving a high compressive strength. 

The effect of sodium sulfate, added as an activator, is significant in terms of compressive 

strength at early age for two of the fly ashes studied; in this case, the parameter used to 

correlate with the compressive strength evolution is the amount of portlandite consumed 

through pozzolanic reactions. However, sodium sulfate does not have the same effect on 

fly ashes with a high amount of Fe2O3, in which portlandite consumption is much lower. 

Keywords: High volume fly ash, sodium sulfate, lime, quicklime, loss on ignition 

1. INTRODUCTION 
 

CO2 emissions have become the main environmental concern world-wide in recent 

years; a report from the PBL Netherlands Environmental Assessment Agency concluded 

that 35.7 billion tonnes of CO2 were produced in 2014 [1, 2]. This number is prompting 

various industries to focus on reducing CO2 emissions through implementation of new 

technologies or innovations. The impact of cement production is approximately 8% of total 

global CO2 emissions [2]. There are many approaches to reduce this emissions footprint, 

one of the most remarkable of which is the use of supplementary cementitious materials 

(SCMs) in the concrete mix to replace a significant fraction of the Portland cement, 
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resulting in mixes which range from high volume fly ash or slag concretes, to alkali-

activated materials or geopolymers [3, 4]; it is important to consider that in some cases 

there is an increase in costs depending on transportation, fly ash source and activator, and 

that these factors can also contribute to the CO2 footprint [4]. Currently the most 

commonly used fly ash percentage in Portland cement blends is about 20% to 30%, and 

researchers have extensively studied mixes with fly ash content higher than 30% with the 

view of extending this range upwards [5-8]. Although there is environmental pressure to 

increase the percentage of fly ash in concrete mixes, it is important to study technical 

concerns such as strength development and durability when seeking to increase the 

cementitious material replacement to levels as high as 60% to 80% [9]; some of the main 

issues to study are related to early strength, setting time, resistance to chloride ingress 

and carbonation, and extra costs resulting for example from high curing temperature or 

high superplasticizer dosages in ready-mixed concrete production [10]. 

When a high volume fly ash concrete is designed, it is necessary to consider a 

reduction in the water to cementitious material ratio; as this is reduced, superplasticizer is 

increased to maintain the same slump [11, 12]. Although such a concrete is considered a 

‘green’ alternative, it is not an optimal one in many instances due to the increased 

consumption of a high-cost superplasticizer. Moreover, setting time and early strength are 

affected, and at some point become critical issues to be controlled. Researchers have also 

studied the possibility of using binders based on 100% fly ash with the use of activators 

other than Portland cement (PC) [13-16]; some of these studies identified the need to cure 

at elevated temperatures to reach target strengths in cases where the fly ash reactivity 

was not high [17]. Intermediate mixes, whose fly ash percentages are between 50% and 

100%, have been studied [18] considering setting time, rheology, and early strength 

evolution.  

 The addition of calcium sulfate anhydrite (CaSO4) in conjunction with 55% fly ash 

as a cement replacement was studied using different curing methods [19]; curing at 65°C 

for 6 h before normal curing allowed the strength to increase by 70% compared to a 

control mix after 3 days. Large amounts of ettringite were found at early age. Gypsum was 

also used in this study; although gypsum was more effective than anhydrite in yielding 

later age strength, anhydrite increased early age strengths significantly. No technical 

reason for this performance was given, and some further research was recommended. 

The necessity of researching the durability of these concretes was also emphasized. 
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 Activation of Portland-fly ash and lime-fly ash cements was accelerated using 

Na2SO4, resulting in increased compressive strength at early ages [20]. Na2SO4 had a 

better effect when using a higher fly ash percentage, and a grinding process applied to the 

fly ash was shown to increase the strength significantly. 

A mix with 30% Portland cement, 70% fly ash and NaOH with sodium silicate could 

achieve similar strengths compared to a control mix with 70% Portland cement and 30% 

fly ash [21]. This effect does not occur when using NaOH alone as an activator. Although 

sodium silicate allows the target strength to be achieved, this activator does increase the 

slump loss [22]. 

Sodium silicate is in general one of the most effective activators for fly ash. This 

activator is widely used in different applications such as adhesives, well cements, acid 

resistant concrete and shotcretes [23], and has a plasticizing as well as accelerating 

effect. CaCl2 is also an effective activator; it reduces the solubility of Ca(OH)2, which 

accelerates the dissolution of fly ash particles, thus affecting the pozzolanic reaction and is 

more effective at later ages [24], but chloride addition is unsuitable for applications 

involving steel reinforcing. K2SO4, Na2SO4, and triethanolamine were also shown to 

improve early strength development [25]. The same study demonstrated a decrease of 

calcium hydroxide and an increase of ettringite content when using 40% fly ash 

replacement in cement. The latter effect helped reduce the pore size. The strengths were 

in most cases similar to the sample without activators; K2SO4 had the best effect, 

increasing the strength significantly. 

On the other hand, unburned carbon present in the fly ash can affect concrete 

consistency. An increment in the loss on ignition (LOI) of the fly ash increases the water 

requirement for a given consistency [26]. The same carbon cellular particles which affect 

the water content also affect the air content, making it necessary to increase the air 

entraining admixture significantly to achieve the desired air content [27]. Although these 

non compliant fly ashes could have an effect on concrete water or admixture demand, it is 

evident they have a positive effect as a cementitious material and can be used in different 

concrete applications [28, 29]; for instance, they have been evaluated to be used in 

pervious concretes [29].    

Considering the current state of the art, the main objective of this study was related 

to understanding the reactivity of different high-loss on ignition fly ashes at a 50% PC 
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replacement level in the presence of Na2SO4, lime and quicklime as activators. The binder 

phases, hydration reactions and the effect of mix design and curing duration on the 

compressive strength of samples cured at 23°C were evaluated for different fly ash 

compositions.   

2. MATERIALS AND METHODS 
 

2.1. Materials 
 

The fly ashes named as TP, FB and TG are high-LOI fly ashes, whereas TA is a 

reference low-LOI North American fly ash. Table 1 presents the chemical compositions of 

these fly ashes. TA has the highest silica content among the fly ashes. All of the fly ashes 

reach the ASTM C 618 Class F requirement for the sum of major oxides (SiO2, Al2O3 and 

Fe2O3) [30], where TA has the highest value and FB the lowest. However, it is not possible 

to directly classify them as Class F fly ashes, because all exceed the basic maximum 6% 

LOI requirement for that classification, although all do fall within the 12% absolute 

maximum which is allowed subject to meeting performance criteria. The FB fly ash has 

12% LOI, whereas TP and TG are between 8% and 10%. TA is the only one that receives 

beneficiation treatment after production in the thermoelectric plant, and so has the lowest 

LOI percentage of 1.53%. The sodium sulfate activator has a purity of 95%. 

The mineralogical composition of each of the fly ashes, and of the Portland cement 

(Type III according to ASTM C150 [31]) is presented in Table 2 and Table 3 respectively. 

Figure 1 presents XRD data for all fly ashes studied. The highest amorphous content is 

displayed by TA. All of the fly ashes contain quartz and mullite as the main crystalline 

phases; TA also contains a notable content of crystalline iron oxides, while FB contains a 

minor phase identified mineralogically as hatrurite, but which is likely to be tricalcium 

silicate (C3S) introduced via a small amount of contamination by Portland cement in 

processing or transport. 

2.2. Sample preparation 

Table 4 includes the mix proportions for mortars. Although most of the procedure 

presented in ASTM C 109 [32] was followed for mortar preparation, some special 

considerations must be mentioned: 
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• The activator was added along with the mix water; it was mixed until it was completely 

dissolved using a Hobart mixer (Model N50). Sodium sulfate and lime had good 

solubility, whereas quicklime in contact with water increased the temperature and 

formed white solid forms. This effect increased with increasing dosages. Portland 

cement and fly ash were added to the mix of water and activator; it was mixed for 30 s 

at the lowest speed setting (level 1, 140 min-1). After that, sand was added and mixed 

for 30 s. It was then left for 1.5 min and mixed again for 1.5 min at a speed setting of 2 

(285 min-1). 

• Samples were cast into steel 50 mm cube moulds, which had been coated with an 

organic mould release agent, and then vibrated to remove excess entrapped air. 

• Samples were cured in the moulds at 100% humidity in a curing room at a temperature 

of 23°C. 

2.3. Analytical characterization 

The chemical composition was determined using a PANalytical Axios sequential 

wavelength dispersive X-ray fluorescence (XRF). The mineralogy was evaluated by X-ray 

diffraction (XRD) using a PANalytical X‘PERT-PRO MPD in Bragg-Brentano configuration 

with an X’celerator detector. The Rietveld method was used to quantify the crystalline 

phases via the X’Pert HighScore Plus software package; a 10 wt % spike of rutile was 

used as an internal standard for the amorphous content quantification.  

Samples of 60 mg were used for the thermogravimetry procedure and The 

Instrument used was a Thermogravimetric Analyzer TGA 2950. Tests were performed with 

a controlled nitrogen atmosphere with a 40 mL/min flow. The temperature was increased 

from ambient to 950°C at a rate of 10°C/min. These results were analysed using TA 

Universal Analysis software, including determination of the numerical derivative of the 

mass loss curve (i.e. differential thermogravimetry). Isothermal calorimetry was performed 

using an I-Cal8000 from Calmetrix. Heat flow was measured for 24 hours to visualise the 

effect of the fly ash and its interaction with lime, quicklime and sodium sulfate. 

 

3. RESULTS AND DISCUSSION 

3.1. Initial characterization 
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The composition of fly ash changed upon increasing its fineness after a sieving process 

(<74 µm and <45 µm); the amorphous material and LOI contents were different for each 

fineness. Table 5 summarizes the effect on the main parameters. By sieving the material, 

not only did the particle size decrease but also the LOI content was reduced. OS (original 

size) TA has the lowest LOI and the highest SiO2 amongst all the fly ashes; this is due to 

the fact of being a commercial fly ash and the treatment (i.e LOI reduction) it receives from 

the fly ash supplier. In contrast, OS FB includes the highest LOI and lowest SiO2 content, 

due to the combustion system used by the energy producer and the fact of not being 

improved or beneficiated by any pre-treatment.   

The strength achieved by each mortar formulation varied depending on the fly ash 

amorphous content: Figure 2 shows how the compressive strength of mortar samples with 

20% fly ash was improved when the amorphous content of the ash increased, across the 

full set of ashes analysed. Three points are shown in Figure 2 for each ash, representing 

the original as-received material, and the ash sieved to pass 74 µm and to pass <45 µm. 

For TP and TG, when the average particle size was reduced by sieving, the LOI content 

also decreased, but the compressive strength decreased because the amorphous content 

was lower. No changes in the water/cement ratio were needed between samples with 

sieved and unsieved ashes, as the water demand was not changed by the sieving 

process; in this case, the effect of the LOI was not evident in terms of water demand. 

However, it appears that depending on the amorphous content of a fly ash, mechanical 

treatment may not be necessary to achieve reasonable strength, even for these ashes 

which are relatively coarse and display high LOI values. The results of similar analysis 

based on reactive SiO2 content, on reactive Al2O3 content, on fineness, and on LOI, did not 

show correlations as direct as the relationship based on the total amorphous content [33], 

and therefore it is hypothesise that this is the dominant factor controlling fly ash reactivity 

in these systems.   

3.2. Compressive strength 

Table 6 presents the mix designations and the scope of the variables investigated. 

As seen in Figure 3a, the compressive strength of the sample with 50% TP using Na2SO4 

was improved by approximately 40% compared to the control without activator 

(TP/OS/50), as the activator has evidently enhanced the reaction process during the first 3 

to 7 days. 
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When quicklime and lime were added to the mix, there was little effect on the 

compressive strength. The optimal dosage was found to be 3% for both quicklime and 

lime. Comparing quicklime and lime, the former had a higher compressive strength after 3 

days, even passing that of the control sample (TP/OS/50); after 7 and 28 days, the lime 

mix had a higher compressive strength, and by 56 days, the quicklime mix improved its 

strength as seen in Figure 3a. Antiohos et al. [34] used quicklime as an activator with fly 

ashes of both Class C and Class F, and observed that not only did this appear to help to 

create physical CH connections between fly ash particles, but also the solubility of SiO2 

was improved; this increased the compressive strength with Class C fly ash, but the effect 

was negative when using Class F fly ash [34]. Considering the compressive strength 

evolution using lime and quicklime, Shi [35] found that there was an optimal portlandite 

level; when it was passed, the Ca(OH)2 that was not involved in any reaction weakened 

the matrix. Shi also found that the initial heat released from the reaction between quicklime 

and water helped to accelerate the pozzolanic reaction, and that the Ca(OH)2 resulting 

from this hydration of quicklime could be more soluble than manufactured lime [35]. 

Figure 3b shows how sodium sulfate increased the compressive strength as the 

activator dosage increased. These results were compared against those of the FB/OS/50 

control sample, and the highest strength with activator almost doubled the performance of 

the un-activated control; FB has a high amorphous content and could affect the activation 

process. Sodium sulfate dosage had the same effect on both TP and FB; there was not a 

significant variation in the strength at 1% and 1.5% addition levels, but a significant 

improvement was observed upon increasing the dosage to 3.5%.  

Although quicklime increased the compressive strength at a dosage of 3% when 

used with FB, it did not have the same effect as sodium sulfate: Figure 3b presents a 

tendency in which a significant increase in strength was only observed after 28 days, 

which seems to contradict the observations of Shi [35] regarding an early-age accelerating 

effect of quicklime. Lime mixes had low strengths compared with the control. Although 

quicklime and lime mixes had a delayed effect compared to sodium sulfate mix, the 

strengths seemed to be improved at later ages, which suggests an enhancement of the 

long-term pozzolanic reaction rather than any significant activation effect. This is 

consistent with the well known early-age stability of portlandite in fly ash-blended cement 

systems, as the clinker reacts to yield a pore solution environment which rapidly becomes 

saturated with respect to portlandite before the fly ash gradually starts to react and 
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consume it via the pozzolanic reaction, and so the addition of extra calcium hydroxide has 

little effect on early age strength development. 

For most of the activators used in conjunction with TG, the highest dosage was the 

most effective. Mixes with sodium sulfate and TG had a high variability between results at 

different ages as presented in Figure 3c), although there was a tendency to obtain a 

consistent strength evolution with a dosage of 3%. Mixes with quicklime (TG/OS/50/Q/5) 

and lime (TG/OS/50/L/5) had the best performance with a dosage of 5%; although the 

compressive strength in some cases could not surpass that of the control samples, the 

evolution from 7 to 28 days was significant. 

Sodium sulfate improved the compressive strength compared with the control mix 

with TA as presented in Figure 3d. The mix with 1% sodium sulfate had acceptable 

behavior at different ages, and the sodium sulfate activator seemed to induce this fly ash 

to react at early ages. The other two activators investigated, lime and quicklime, generally 

did not achieved the strength of the control mix using the different fly ashes studied. 

Overall, it is clear that Na2SO4 had a positive effect on the activation process. This 

was also evident by the work of Qian et al. [20], who evaluated the effectiveness of this 

activator with HVFA mixes and found that Na2SO4 reacted directly with the Ca(OH)2, 

increasing the alkalinity and accelerating fly ash dissolution; SO4 increased the formation 

of ettringite, affecting the density of the mortar matrix positively [20]. Donatello et al. [36] 

also showed a significant accelerating effect from addition of Na2SO4 as an activator in 

binders containing 80% fly ash and 20% Portland cement, although at their very low 

clinker content the addition of Na2SO4 also suppressed ettringite formation, which was not 

observed in this study (see section 3.5 below), and this indicates differences in the 

chemical mechanisms induced by ettringite growth depending on the relative availability of 

aluminate from C3A at early age. 

3.3. Isothermal calorimetry 

Figure 4 presents the observed heat evolution from each of the formulations 

studied during the earliest period of reaction, with a focus on the pre-induction, induction 

and acceleration periods. FB had the highest first peak (mixing peak) with quicklime. 

Generally, delays in the reactions leading to the acceleration period increase with 

increasing fly ash content, which is due to the dilution of PC. Wei et al [37] also mentioned 

a possible delay due to the reaction of the Ca from the solution with the aluminum on the 
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fly ash particle surfaces. According to Figure 4, when quicklime and lime were included, 

the setting time decreased; the acceleration peak was reached in less time. Sodium 

sulfate increased the peak of the heat flow by 0.4 mW/g but there was a delay in the final 

setting time of approximately 2 h compared with the mix FB/OS/50; because this activator 

introduced sodium and sulfate into the mix, a reaction with fly ash aluminates was 

expected similar to the way this aluminum content could react with calcium from the 

solution [37]. This again differs from the results of Donatello et al. [36] who found a strong 

acceleration in early setting through the addition of Na2SO4 to a cement containing 80% fly 

ash. It seems that because the 50% Portland cement content here is sufficient to give a 

relatively normal setting behavior with the fly ash acting as a filler at early age, the Na2SO4 

gives a slight retardation of the onset of the acceleration period but a higher maximum rate 

of heat release (around 15-18 hours), and this higher rate of reaction once the acceleration 

period does commence is responsible for the increased strength of these cements from 3 

days onwards.  

3.4. Thermogravimetry 

The calcium hydroxide content of each paste was determined using 

thermogravimetry, and the results are summarised in Figure 5. The Ca(OH)2 content 

began to decreased before 7 days of curing when using TP with sodium sulfate (compare 

TP/OS/50/A/1/3 and TP/OS/50/A/1/7), whereas with quicklime and the control mix with 

20% fly ash (TP/OS/20/0/0/7), this occurred after 7 days. The fact that portlandite 

consumption started earlier using sodium sulfate, shows its influence as an activator for fly 

ash, and this is consistent with the longer-term strength development data; the fly ash 

glass phases are broken down with this activator due to a more highly alkaline 

environment, accelerating the consumption of Ca(OH)2 [25].  Owing to nucleation and the 

seeding effect [22], the amount of Ca(OH)2 per mass of cement for mixes including 50% fly 

ash was higher than the mix with 100% cement, as only limited pozzolanic reaction had 

taken place within the 28 day timeframe of the TGA experiments. 

3.5. X-ray Diffraction 

From the XRD evaluation (Figure 6), the amorphous and crystalline phase content 

of each of the hydrated binders was quantified (Table 7). It was found that the content of 

tobermorite was the highest in the sample with 100% cement at 3 days. Portlandite content 

was the highest for the mix with 100% cement followed by the mix with lime. Portlandite 

was almost halved for mixes with activators during the first 3 days. 
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Sodium sulfate had an effect on ettringite formation; as shown in Figure 6 and 

Table 7, most mixes with sodium sulfate had the highest ettringite content, which is in 

contrast to the results of Donatello et al. [36] at higher fly ash content as noted above. 

Unreactive crystalline phases such as quartz and mullite, and the amorphous content 

appeared in high proportions for mixes including fly ash. The quartz and mullite content 

remained proportional for mixes including 50% fly ash compared with the original ash, 

providing an internal cross-check on the quality of the quantification results and 

demonstrating again that these phases are not consumed as the glassy component of the 

fly ash reacts. The amorphous content is composed of the combination of C-S-H and the 

residual fly ash amorphous fraction. 

3.6. Scanning electron microscopy 

From SEM images, including those shown in Figure 7, it can be deduced that 

sodium sulfate promoted ettringite formation in these cements. Figure 7 shows ettringite 

formation over fly ash particle surfaces of TP at ages of 7 and 28 days, when 50% fly ash 

was used with sodium sulfate. The presence of portlandite and C-S-H is also evident in 

these SEM images. 

3.7. The importance of Fe2O3 

As noted above, mixes with TP and FB activated by sodium sulfate produced more 

ettringite than the others; this helped to increase initial compressive strengths. 

Correspondingly, the amount of portlandite consumption was higher for these mixes at an 

early age. However, for mixes with TG and TA this did not occur. The main apparent 

differences between these groups of fly ashes is the high Fe2O3 content of TG and TA, 

and so it may be deduced that this had a negative effect on the activation process. The 

mechanism by which this may have happened remains unclear, and the role of Fe 

supplied by fly ash in determining its reaction in alkali-activated binders is far from fully 

understood, as the Fe in glassy fly ash phases is likely to reduce the rate of their 

dissolution according to standard glass chemistry arguments. However, once it does 

dissolve, it may also play an active role in forming reaction products in the hydrated 

cement, as is the case for Fe supplied by C4AF in the cement. Thus, it is important that the 

effect of Fe2O3 content should be studied in more detail to understand its influences, both 

negative and positive, in hybrid cementitious systems activated by sodium sulfate, as this 

remains an area with many open questions. 

4. CONCLUSIONS 
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 According to the results of this study, the amorphous content of fly ash was a key 

factor controlling compressive strength development for mixes with low fly ash content 

(20%) and without any activator. By increasing fly ash fineness, its composition was also 

changed due to the heterogeneity of the ash and unequal distribution of phases between 

size fractions; the measured amorphous and LOI contents varied depending on the 

fineness following sieve separation. The compressive strength of mortar samples was 

improved when the amorphous content increased; in some cases, however, when the 

particle size and the LOI content decreased, the compressive strength decreased, which 

probably occurred because the amorphous content of the fine fraction of some of the 

ashes studied was low.  

The effect of sodium sulfate on the reaction of hybrid cement mixes containing TP 

and FB was significant at initial ages. The increased amounts of ettringite and the 

accelerated portlandite consumption were reflected in the compressive strength evolution. 

However, sodium sulfate did not have the same effect on fly ashes TG and TA, and the 

amounts of ettringite formation and portlandite consumption were not as significant as 

those for the first two fly ashes. The main difference between these fly ashes was the 

higher amount of Fe2O3 in ashes TG and TA compared to the others investigated. 

Portlandite consumption was one of the main indicators of fly ash reaction; 

portlandite consumption commenced after 3 days when using sodium sulfate with 50% of 

either TP and FB blended with Portland cement. For most of the cases studied, portlandite 

production in mixes including lime and quicklime continued to increase after 7 days. In the 

case of ettringite, its formation helped improve the compressive strength in the first days 

for mixes with TP and FB; for these mixes, the formation of C-S-H increased, becoming 

measurable by XRD as part of the amorphous content at later ages. Mixes with sodium 

sulfate had the highest ettringite and amorphous contents. Samples with lime and 

quicklime produced ettringite in low proportions, and the amorphous content did not 

increase significantly with time.  

The reference fly ash (low loss on ignition) did not perform better than the high-LOI 

ashes as expected. The effect of the Fe2O3 content is highly relevant to the activation 

process, but remains poorly understood; this appears to reduce the speed of dissolution of 

the reactive components of fly ash. 
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Figure captions 

Fig. 1. X-ray diffractograms of the fly ashes studied 

Fig. 2. Influence of the amorphous content of the fly ash on the 28-day compressive 

strength of cements formulated with 20% replacement of Portland cement by each fly ash 
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Fig. 3. Compressive strength evolution: a) TP, b) FB, c) TG, d) TG 

Fig. 4. Results of isothermal calorimetry testing 

Fig. 5. Ca(OH)2 content of each mix as determined using TGA 

Fig. 6. X-ray diffractograms of hardened binders after 3 days of curing 

Fig. 7. SEM images of selected binders: a) TP/OS/50/A/1/7, b) TP/OS/50/A/1/28 

 

Table captions 

Table 1. Chemical and physical properties of precursor materials tested 

Table 2. Mineralogical composition of fly ashes as determined by quantitative X-ray 

diffraction 

Table 3. Mineralogical composition of cement as determined by quantitative X-ray 

diffraction 

Table 4. Mix proportions 

Table 5. Fly ash composition before and after sieving process 

Table 6. Mix ID encoding (order, description and code per variable)  

Table 7. XRD results 
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Composition Label ICSD
Quartz Q 98-006-2406
Mullite M 98-006-6451

Hematite H 98-020-1098
Calcite C 98-002-8827
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Fig. 2 
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Fig. 5 
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A Alite C Calcite P Portlandite Ha Hatrurite
B Belite M Mullite T Tobermorite R Rutile
E Ettringite Q Quartz G Gypsum

50% FB and lime 

50% FB and sodium sulfate 

100% FB and sodium sulfate 

100% cement 

Anhydrous cement 
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Ettringite 

Gypsum 

 

  

Portlandite 

Ettringite 

a) 

b) 



23 
 

Chemical and Physical 
properties 

TP FB TG TA 

SiO2 (%) 56.67 43.83 55.14 58.58 
Al2O3 (%) 20.65 28.11 17.63 19.96 
Fe2O3 (%) 4.92 4.39 9.77 10.21 

(SiO2)+(Al2O3)+ (Fe2O3) 
(%) 

82.24 76.33 82.54 88.75 

SO3 (%) 0.06 0.09 0.11 0.50 
Na2O (%) 0.07 0.89 0.56 0.76 
CaO (%) 3.27 5.99 3.64 3.17 

K2O (%) 1.59 1.28 1.78 2.29 

MgO (%) 0.62 1.74 1.38 1.50 
LOI (%) 10.74 12.00 8.74 1.53 

Density (g/ cm3
) 2.09 2.11 2.26 2.32 

Retained # 325 (%)  38.20 29.90 30.50 18.70 
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Composition (%) TP FB TG TA 

Quartz 18 8 22.8 14.8 

Mullite 15.1 20.6 8.8 6 

Hematite 0.7 0.5 1.2 1.2 

Magnetite 1.2 

Coesite 0.4 

Calcite 1.2 

   Lime 

   

0.6 

Magnesioferrite 1.3 

Amorphous material 64.5 69.3 65.6 76 
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Mineralogical Composition of Cement (%) 

C3S C2S C4AF C3A (cubic) 
C3A 

(orthorhombic) 
Quartz 

52.1 30.5 10.2 3.3 0.8 0.3 
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Fly ash [%] 0% 20% 50% 50% 

Cement [g] 500 400 250 250 

Fly ash [g]   100 250 250 

Sand [g] 1375 1375 1375 1375 

Water [ml] 242 242 242 242 

    

+ Activator 
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Fly ash Sieve - Treatment 
Main Parameters 

LOI Fe2O3 CaO SiO2 Amorphous 

TP 
As received 10.7 4.9 3.3 56.7 64.5 

< 74µm 8.7 5.9 0.6 59.5 67.3 
< 45µm 5.1 5.3 1.4 62.3 59.6 

FB 
As received 12.0 4.4 6.0 43.8 69.3 

< 74µm   3.8 3.2 45.0 60.2 
< 45µm 5.8 4.8 6.9 45.4 63.6 

TG 
As received 8.7 9.8 3.6 55.1 65.6 

< 74µm 1.5 11.2 2.6 63.1 56.1 
< 45µm 1.9 10.5 4.4 56.9 65.5 

TA 
As received 1.5 10.2 3.2 58.6 76.0 

< 74µm 1.3 10.7 3.0 57.9 75.5 
< 45µm 1.5 10.4 2.8 56.6 78.1 
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Mix ID (1/ 2/ 3/ 4/ 5/ 6) 
Letters and numbers order Description 

1 Cementitious material name 
2 Cementitious material size 
3 Cementitious material percentage 
4 Activator 
5 Dosage (%) 

6 Age – Days 
1 - Cementitious material Name 

CE Cement 

TP, FB, TG, TA Fly ash 
2 - Size 

10 D50 - Cement 
OS Original Size - Fly ash 
3 - Cementitious material percentage 
0 0% 
20 20% 
50 50% 

100 100% 
4 - Activators 

A Sodium sulfate 
Q Quicklime 

L Lime 
 

 

 

       

                                         

  



29 
 

Mix ID Quartz low 
Tobermorite 

9
a
 

Mullite Portlandite Ettringite C2S+C3S C4AF C3A 
Amorphous 

content 

CE/10/100/0/0/3 1.5 15.9   14.7 4.6 17.3 3.0 1.0 42.0 

FB/OS/50/A/1/3 2.5 4.8 8.2 3.7 4.3 4.5 0.8 0.3 71.0 

FB/OS/50/L/1/3 3.4 9.5 8.1 7.1 4.4 8.3 0.7 0.1 58.6 

TA/OS/100/A/1/3 17.5   6.9   0.9       74.8 

TA/OS/50/L/1/3 2.8 10.5 1.1 10.6 0.7 11.0 0.7   62.6 

TG/OS/50/L/1/3 7.6 6.7 4.2 7.7 1.8 8.4 0.5 0.3 62.9 

TP/OS/50/A/1/3 7.3 7.4 7.8 6.0 5.6 4.3 0.6 0.2 60.8 

TP/OS/50/L/1/3 7.6 4.3 8.4 6.9 3.1 5.6 0.8 0.4 62.7 

 

             


