74 research outputs found

    Effects of Loneliness, Years of Service, and Spiritual Well-Being upon Burn-Out Among Lutheran Church-Missouri Synod Clergy

    Full text link
    Past research had concluded that a combination of individual and situational factors interact as causes for burn-out in ministers. This present study sought to measure three factors, loneliness, years of service, and spiritual well-being for their singular and combined impact upon burn-out among Christian pastors. Lutheran Church-Missouri Synod pastors, 276 in number, were surveyed to determine their level of burn-out, together with measure of the afore-mentioned variables. It was expected that fewer years of service, lower spiritual well-being, and higher loneliness would effect increased levels of measured burn-out in the pastors surveyed. A three-way analysis of variance indicated that burn-out scores were effected by loneliness, years of service, and spiritual well-being, but revealed no interaction effects of these three factors upon burn-out scores. Future recommendations for research include attempts to determine likely points in career for burn-out, and future identification of factors which effect increased burnout

    OncoLog Volume 49, Number 01, January 2004

    Get PDF
    Pregnancy and Cancer Treatment Often Are Not Mutually Exclusive Studies of the Viral Origins of Some Cancers Lead to New Prevention, Treatment Strategies House Call: Cancer and Your Weight DiaLog: Treating Breast Cancer during Pregnancy, by Karin M.E.H. Gwyn, MD, Assistant Professor, and Richard L. Theriault, DO, Professor, Department of Breast Medical Oncologyhttps://openworks.mdanderson.org/oncolog/1125/thumbnail.jp

    Energy-sensitive GaSb/AlAsSb separate absorption and multiplication avalanche photodiodes for X-Ray and gamma-ray detection

    Get PDF
    Demonstrated are antimony‐based (Sb‐based) separate absorption and multiplication avalanche photodiodes (SAM‐APDs) for X‐ray and gamma‐ray detection, which are composed of GaSb absorbers and large bandgap AlAsSb multiplication regions in order to enhance the probability of stopping high‐energy photons while drastically suppressing the minority carrier diffusion. Well‐defined X‐ray and gamma‐ray photopeaks are observed under exposure to 241Am radioactive sources, demonstrating the desirable energy‐sensitive detector performance. Spectroscopic characterizations show a significant improvement of measured energy resolution due to reduced high‐peak electric field in the absorbers and suppressed nonradiative recombination on surfaces. Additionally, the GaSb/AlAsSb SAM‐APDs clearly exhibit energy response linearity up to 59.5 keV with a minimum full‐width half‐maximum of 1.283 keV. A further analysis of the spectroscopic measurement suggests that the device performance is intrinsically limited by the noise from the readout electronics rather than that from the photodiodes. This study provides a first understanding of Sb‐based energy‐sensitive SAM‐APDs and paves the way to achieving efficient detection of high‐energy photons for X‐ray and gamma‐ray spectroscopy

    Algorithm to Diagnose Leaks or Blockages Downstream of the Secondary Air Injection Reaction (SAIR) Pressure Sensor

    Get PDF
    A control module and method for an exhaust system of an engine can include a secondary air intake (SAI) pressure module that monitors SAI pressure. An accumulation module can accumulate an SAI string length based on the monitored SAI pressure. A calculation module can determine an average SAI string length based on the accumulated SAI string length. A determination module can determine an operating characteristic of the vehicle exhaust based on the average SAI string length

    Significant suppression of surface leakage in GaSb/AlAsSb heterostructure with Al2O3 passivation

    Get PDF
    This work develops a (NH4)2S/Al2O3 passivation technique for photodiode-based GaSb/AlAsSb heterostructure. Surface-sulfurated GaSb/AlAsSb heterostructure mesas show a significant suppression of reversed-bias dark current by 4–5 orders of magnitude after they are further passivated by Al2O3 layers. So the mesa sidewalls treated with (NH4)2S/Al2O3 layers can effectively inhibit the shunt path of dark carriers. The activation energies for both bulk and surface components are extracted from temperature-dependent current–voltage characteristics, which suggest that the bulk characteristics remain unchanged, while Fermi-level pinning at surfaces is alleviated. Additionally, temperature coefficients of the breakdown voltage are extracted, confirming that the breakdown process is confined entirely in the large bandgap AlAsSb regions. This study shows that the implementation of (NH4)2S/Al2O3 passivation can lead to room temperature GaSb-based photodiodes and GaSb/AlAsSb-based avalanche photodiodes for highly efficient photodetection

    Postcopulatory sexual selection

    Get PDF
    The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes

    Immediate chest X-ray for patients at risk of lung cancer presenting in primary care: randomised controlled feasibility trial

    Get PDF
    Background: Achieving earlier stage diagnosis is one option for improving lung cancer outcomes in the United Kingdom. Patients with lung cancer typically present with symptoms to general practitioners several times before referral or investigation. Methods: We undertook a mixed methods feasibility individually randomised controlled trial (the ELCID trial) to assess the feasibility and inform the design of a definitive, fully powered, UK-wide, Phase III trial of lowering the threshold for urgent investigation of suspected lung cancer. Patients over 60, with a smoking history, presenting with new chest symptoms to primary care, were eligible to be randomised to intervention (urgent chest X-ray) or usual care. Results: The trial design and materials were acceptable to GPs and patients. We randomised 255 patients from 22 practices, although the proportion of eligible patients who participated was lower than expected. Survey responses (89%), and the fidelity of the intervention (82% patients X-rayed within 3 weeks) were good. There was slightly higher anxiety and depression in the control arm in participants aged >75. Three patients (1.2%) were diagnosed with lung cancer. Conclusions: We have demonstrated the feasibility of individually randomising patients at higher risk of lung cancer, to a trial offering urgent investigation or usual care

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • …
    corecore