153 research outputs found

    Molecular Signature of Polyoxometalates in Electron Transport of Silicon-based Molecular Junctions

    Full text link
    Polyoxometalates (POMs) are unconventional electro-active molecules with a great potential for applications in molecular memories, providing efficient processing steps onto electrodes are available. The synthesis of the organic-inorganic polyoxometalate hybrids [PM11_{11}O39_{39}(Sn(C6_6H4_4)C\equivC(C6_6H4_4)N2_2)]3^{3-} (M = Mo, W) endowed with a remote diazonium function is reported together with their covalent immobilization onto hydrogenated n-Si(100) substrates. Electron transport measurements through the resulting densely-packed monolayers contacted with a mercury drop as a top electrode confirms their homogeneity. Adjustment of the current-voltage curves with the Simmons equation gives a mean tunnel energy barrier of 1.8 eV and 1.6 eV, for the Silicon-Molecules-Metal (SMM) junctions based on the polyoxotungstates (M = W) and polyoxomolybdates (M = Mo), respectively. This follows the trend observed in the electrochemical properties of POMs in solution, the polyoxomolybdates being easier to reduce than the polyoxotungstates, in agreement with lowest unoccupied molecular orbitals (LUMOs) of lower energy. The molecular signature of the POMs is thus clearly identifiable in the solid-state electrical properties and the unmatched diversity of POM molecular and electronic structures should offer a great modularity

    5-Phenyl-2-(4-pyrid­yl)pyrimidine

    Get PDF
    The title compound, C15H11N3, crystallizes with two independent mol­ecules in the asymmetric unit. The dihedral angles between the phenyl and pyridine rings in each mol­ecule are 53.48 (5) and 50.80 (5)°. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds connect mol­ecules into one-dimensional chains. In addition, the crystal structure is stabilized by weak C—H⋯π(arene) inter­actions

    Polyoxometalates in the Hofmeister series

    Get PDF
    We propose a simple experimental procedure based on the cloud point measurement of a non-ionic surfactant as a tool for (i) estimating the super-chaotropic behaviour of polyoxometalates (POMs) and for (ii) establishing a classification of POMs according to their affinity towards polar surfaces

    Transport and Phototransport in ITO Nanocrystals with Short to Long-Wave Infrared Absorption

    Get PDF
    Nanocrystals are often described as an interesting strategy for the design of low-cost optoelectronic devices especially in the infrared range. However the driving materials reaching infrared absorption are generally heavy metalcontaining (Pb and Hg) with a high toxicity. An alternative strategy to achieve infrared transition is the use of doped semiconductors presenting intraband or plasmonic transition in the short, mid and long-wave infrared. This strategy may offer more flexibility regarding the range of possible candidate materials. In particular, significant progresses have been achieved for the synthesis of doped oxides and for the control of their doping magnitude. Among them, tin doped indium oxide (ITO) is the one providing the broadest spectral tunability. Here we test the potential of such ITO nanoparticles for photoconduction in the infrared. We demonstrate that In2O3 nanoparticles presents an intraband absorption in the mid infrared range which is transformed into a plasmonic feature as doping is introduced. We have determined the cross section associated with the plasmonic transition to be in the 1-3x10-13 cm2 range. We have observed that the nanocrystals can be made conductive and photoconductive due to a ligand exchange using a short carboxylic acid, leading to a dark conduction with n-type character. We bring further evidence that the observed photoresponse in the infrared is the result of a bolometric effect

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
    corecore