908 research outputs found

    Shockwaves in converging geometries

    Get PDF
    Plate impact experiments are a powerful tool in equation of state (EOS) development, but are inherently limited by the range of impact velocities accessible to the gun. In an effort to dramatically increase the range of pressures which can be studied with available impact velocities, a new experimental technique is being developed. The possibility of using a confined converging target to focus Shockwaves and produce a large amplitude pressure pulse is examined. When the planar shock resulting from impact enters the converging target the impedance mismatch at the boundary of the confinement produces reflected Mach waves and the subsequent wave interactions produce a diffraction cycle resulting in increases in the shock strength with each cycle. Since this configuration is limited to relatively low impedance targets, a second technique is proposed in which the target is two concentric cylinders designed such that the inner cylinder will have a lower shock velocity than the much larger shock velocity in the outer cylinder. The resulting dispersion in the wave front creates converging shocks, which will interact and eventually result in a steady Mach configuration with an increase in pressure in the Mach disk. Numerical simulations indicate a significant increase in pressure for both methods and show promise for the proposed concepts

    Advances in Shock Compression of Mantle Materials and Implications

    Get PDF
    Hugoniots of lower mantle mineral compositions are sensitive to the conditions where they cross phase boundaries including both polymorphic phase transitions and partial to complete melting. For SiO_2, the Hugoniot of fused silica passes from stishovite to partial melt (73 GPa, 4600 K) whereas the Hugoniot of crystal quartz passes from CaCi_2 structure to partial melt (116 GPa, 4900 K). For Mg_2SiO_4, the forsterite Hugoniot passes from the periclase +MgSiO_3 (perovskite) assemblage to melt before 152 GPa and 4300 K, whereas the wadsleyite Hugoniot transforms first to periclase +MgSiO_3 (post-perovskite) and then melts at 151 GPa and 4160 K. Shock states achieved from crystal enstatite are molten above 160 GPa. High-pressure Grüneisen parameters for molten states of MgSiO_3 and Mg_2SiO_4 increase markedly with compression, going from 0.5 to 1.6 over the 0 to 135 GPa range. This gives rise to a very large (>2000 K) isentropic rise in temperature with depth in thermal models of a primordial deep magma ocean within the Earth. These magma ocean isentropes lead to models that have crystallization initiating at mid-lower mantle depths. Such models are consistent with the suggestion that the present ultra-low velocity zones, at the base of the lowermost mantle, represent a dynamically stable, partially molten remnant of the primordial magma ocean. The new shock melting data for silicates support a model of the primordial magma ocean that is concordant with the Berkeley-Caltech iron core model [1] for the temperature at the center of the Earth

    Shock temperatures of preheated MgO

    Get PDF
    Shock temperature measurements via optical pyrometry are being conducted on single-crystal MgO preheated before compression to 1905–1924 K. Planar shocks were generated by impacting hot Mo(driver plate)-MgO targets with Mo or Ta flyers launched by the Caltech two-stage light-gas gun up to 6.6 km/s. Quasi-brightness temperature was measured with 2–3% uncertainty by a 6-channel optical pyrometer with 3 ns time resolution, over 500–900 nm spectral range. A high-power, coiled irradiance standard lamp was adopted for spectral radiance calibration accurate to 5%. In our experiments, shock pressure in MgO ranged from 102 to 203 GPa and the corresponding temperature varied from 3.78 to 6.53 kK. For the same particle velocity, preheated MgO Hugoniot has about 3% lower shock velocity than the room temperature Hugoniot. Although model shock temperatures calculated for the solid phase exceeded our measurements by ~5 times the uncertainty, there was no clear evidence of MgO melting, up to the highest compression achieved

    Mycobacterium tuberculosis subverts negative regulatory pathways in human macrophages to drive immunopathology.

    Get PDF
    Tuberculosis remains a global pandemic and drives lung matrix destruction to transmit. Whilst pathways driving inflammatory responses in macrophages have been relatively well described, negative regulatory pathways are less well defined. We hypothesised that Mycobacterium tuberculosis (Mtb) specifically targets negative regulatory pathways to augment immunopathology. Inhibition of signalling through the PI3K/AKT/mTORC1 pathway increased matrix metalloproteinase-1 (MMP-1) gene expression and secretion, a collagenase central to TB pathogenesis, and multiple pro-inflammatory cytokines. In patients with confirmed pulmonary TB, PI3Kδ expression was absent within granulomas. Furthermore, Mtb infection suppressed PI3Kδ gene expression in macrophages. Interestingly, inhibition of the MNK pathway, downstream of pro-inflammatory p38 and ERK MAPKs, also increased MMP-1 secretion, whilst suppressing secretion of TH1 cytokines. Cross-talk between the PI3K and MNK pathways was demonstrated at the level of eIF4E phosphorylation. Mtb globally suppressed the MMP-inhibitory pathways in macrophages, reducing levels of mRNAs encoding PI3Kδ, mTORC-1 and MNK-1 via upregulation of miRNAs. Therefore, Mtb disrupts negative regulatory pathways at multiple levels in macrophages to drive a tissue-destructive phenotype that facilitates transmission

    A review of CO2 coolants for sustainable machining

    Get PDF
    In many machining operations, metalworking fluids (MWFs) play an invaluable role. Often, proper application of an intelligent MWF strategy allows manufacturing processes to benefit from a multitude of operational incentives, not least of which are increased tool life, improved surface integrity and optimised chip handling. Despite these clearly positive implications, current MWF strategies are often unable to accommodate the environmental, economic and social conscience of industrial environments. In response to these challenges, CO2 coolants are postulated as an operationally viable, environmentally benign MWF solution. Given the strong mechanistic rationale and historical evidence in support of cryogenic coolants, this review considers the technological chronology of cryogenic MWF’s in addition to the current state-of-the-art approaches. The review also focuses on the use of CO2 coolants in the context of the machining of a multitude of material types in various machining conditions. In doing so, cryogenic assisted machining is shown to offer a litany of performance benefits for both conventional emulsion (flood) cooling and near dry strategies, i.e., minimum quantity lubrication (MQL), as well as aerosol dry lubrication (ADL)

    Model estimates of metazoans' contributions to the biological carbon pump

    Get PDF
    Funding: This work was supported by the Centre for Ocean Life, a VKR Centre of Excellence funded by the Villum Foundation, and by the Gordon and Betty Moore Foundation (grant no. 5479). André W. Visser was funded in part through the Horizon 2020 project ECOTIP (grant no. 869383). Andrew S. Brierley and Roland Proud were funded in part through the EU BG3 project “SUMMER” and BG8 project “Mission Atlantic”. Collated echo-sounder data obtained from the British Oceanographic Data Centre (BODC) included observations made during the Atlantic Meridional Transect. The Atlantic Meridional Transect (AMT) is funded by the UK Natural Environment Research Council through its National Capability Long-term Single Centre Science Programme, Climate Linked Atlantic Sector Science (grant number NE/R015953/1).The daily vertical migrations of fish and other metazoans actively transport organic carbon from the ocean surface to depth, contributing to the biological carbon pump. We use an oxygen-constrained, game-theoretic food-web model to simulate diel vertical migrations and estimate near-global (global ocean minus coastal areas and high latitudes) carbon fluxes and sequestration by fish and zooplankton due to respiration, fecal pellets, and deadfalls. Our model provides estimates of the carbon export and sequestration potential for a range of pelagic functional groups, despite uncertain biomass estimates of some functional groups. While the export production of metazoans and fish is modest (∼20 % of global total), we estimate that their contribution to carbon sequestered by the biological pump (∼800 PgC) is conservatively more than 50 % of the estimated global total (∼1300 PgC) and that they have a significantly longer sequestration timescale (∼250 years) than previously reported for other components of the biological pump. Fish and multicellular zooplankton contribute about equally to this sequestered carbon pool. This essential ecosystem service could be at risk from both unregulated fishing on the high seas and ocean deoxygenation due to climate change.Publisher PDFPeer reviewe

    EXPERIMENTAL STUDIES OF MITIGATION MATERIALS FOR BLAST INDUCED TBI

    Get PDF
    The objective of this experimental study is to compare the effects of various materials obstructing the flow of a blast wave and the ability of the given material to reduce the damage caused by the blast. Several methods of energy transfer in blast wave flows are known or expected including: material interfaces with impedance mismatches, density changes in a given material, internal shearing, and particle fracture. The theory applied to this research is that the greatest energy transfer within the obstructing material will yield the greatest mitigation effects to the blast. Sample configurations of foam were varied to introduce material interfaces and filler materials with varying densities and impedances (liquids and powders). The samples were loaded according to a small scale blast produced by an explosive driven shock tube housing gram-range charges. The transmitted blast profiles were analyzed for variations in impulse characteristics and frequency components as compared to standard free field profiles. The results showed a rounding effect of the transmitted blast profile for all samples with the effects of the low density fillers surpassing all others tested.United States. Office of Naval Research (N00014-08-1-0261
    corecore