329 research outputs found

    Evaluation of the Antioxidant Capacity of Fruit Juices by Two Original Analytical Methods

    Get PDF
    Two analytical methods previously developed by our groups were employed to estimate the antioxidant capacity of commercial fruit juices. The electrochemical method, which measures the scavenging activity of antioxidants towards OH radicals generated by both hydrogen peroxide photolysis and Fenton’s reaction, is based on the recovery of the cyclic voltametric response of the redox probe Ru(NH3)63+ at a Glassy Carbon electrode modified with a thin film of an insulating polyphenol, in the presence of compounds with antioxidant properties. The values of the antioxidant capacity of the fruit juices are expressed as vitamin C equivalents/L. The chromatographic method is based on the generation of OH radicals via Fenton’s reaction in order to test the inhibition of their formation in the presence of antioxidant compounds by monitoring salicylate aromatic hydroxylation derivatives as markers of •OH production, by means of HPLC coupled to coulometric detection. The results are expressed as the percentage of inhibition of •OH production in the presence of the tested juice compared to the control sample. When OH radicals are produced by Fenton’s reaction, the antioxidant capacity of the juices, estimated by both methods, displays an analogous trend, confirming that they can be considered an alternative for measuring the ability of antioxidants to block OH radical formation

    How are deep soils responding to warming?

    Get PDF
    Scientists aim to integrate observations from deep-soil-warming experiments worldwide to better understand how ecosystems vital to food security and environmental health will react to climate change

    Left Ventricular Unloading in Extracorporeal Membrane Oxygenation:A Clinical Perspective Derived from Basic Cardiovascular Physiology

    Get PDF
    Purpose of Review: To present an abridged overview of the literature and pathophysiological background of adjunct interventional left ventricular unloading strategies during veno-arterial extracorporeal membrane oxygenation (V-A ECMO). From a clinical perspective, the mechanistic complexity of such combined mechanical circulatory support often requires in-depth physiological reasoning at the bedside, which remains a cornerstone of daily practice for optimal patient-specific V-A ECMO care. Recent Findings: Recent conventional clinical trials have not convincingly shown the superiority of V-A ECMO in acute myocardial infarction complicated by cardiogenic shock as compared with medical therapy alone. Though, it has repeatedly been reported that the addition of interventional left ventricular unloading to V-A ECMO may improve clinical outcome. Novel approaches such as registry-based adaptive platform trials and computational physiological modeling are now introduced to inform clinicians by aiming to better account for patient-specific variation and complexity inherent to V-A ECMO and have raised a widespread interest. Summary: To provide modern high-quality V-A ECMO care, it remains essential to understand the patient's pathophysiology and the intricate interaction of an individual patient with extracorporeal circulatory support devices. Innovative clinical trial design and computational modeling approaches carry great potential towards advanced clinical decision support in ECMO and related critical care.</p

    Fast branching algorithm for Cluster Vertex Deletion

    Get PDF
    In the family of clustering problems, we are given a set of objects (vertices of the graph), together with some observed pairwise similarities (edges). The goal is to identify clusters of similar objects by slightly modifying the graph to obtain a cluster graph (disjoint union of cliques). Hueffner et al. [Theory Comput. Syst. 2010] initiated the parameterized study of Cluster Vertex Deletion, where the allowed modification is vertex deletion, and presented an elegant O(2^k * k^9 + n * m)-time fixed-parameter algorithm, parameterized by the solution size. In our work, we pick up this line of research and present an O(1.9102^k * (n + m))-time branching algorithm

    Preliminary Monte Carlo study of CZT response to BNCT (n+γ) background

    Get PDF
    Boron Neutron Capture Therapy (BNCT) effectiveness depends on the therapeutic dose delivered in tumour when targeted by a sufficient amount of 10B atoms and exposed to a proper flux of thermal neutrons. Presently these quantities are measured indirectly. The availability of an in vivo and real time dose monitoring tool would be a tremendous achievement to fully exploit BNCT. To this end, a Single-Photon Emission Computed Tomography (SPECT) can measure the 478keV γ-ray emitted after 94% of 10B capture reactions. Presently, the Italian National Institute of Nuclear Physics (INFN) is supporting the 3CaTS project whose aim is to develop a dedicated BNCT-SPECT based on CdZnTe (CZT) semiconductor detectors. A BNCT-SPECT must operate in a highly intense (n + γ) radiation field. Thus, it is important to study the response of CZT detectors when working in such challenging conditions. In the present work we focused on three main aspects: i) the spectra of the radiation background expected in an accelerator-based BNCT treatment room; ii) the interaction of the thermal neutrons with cadmium present in the crystal; iii) the estimation of the recorded photon counts spectrum when a 478keV photon source is simulated inside a tissue equivalent phantom

    Cobaltabis(dicarbollide) ([o-COSAN]&minus;) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma

    Get PDF
    Purpose: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8&prime;-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. Methods: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. Results: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies. In vitro tests in U87 and T98G cells conclude that the amount of 10B inside the cells is enough for BNCT irradiation. BNCT becomes more effective on T98G after their incubation with Na[8,8&prime;-I2-o-COSAN], whereas no apparent cell-killing effect was observed for untreated cells. Conclusions: These small molecules, particularly [8,8&prime;-I2-o-COSAN]&minus;, are serious candidates for BNCT now that the facilities of accelerator-based neutron sources are more accessible, providing an alternative treatment for resistant glioblastoma

    A laboratory-scale annular continuous flow reactor for UV photochemistry using excimer lamps for discrete wavelength excitation and its use in a wavelength study of a photodecarboxlyative cyclisation

    Get PDF
    This paper describes a new annular reactor for continuous UV photochemistry, which uses easily interchangeable excimer lamps of different wavelengths. The reactor has narrow clearance to form thin films of material for efficient irradiation of molecules. Its use is demonstrated by investigating the effect of discrete wavelength lamps (222, 282 and 308 nm) on the reaction of potassium N-phthalimidobutanoate 1. The ability of the reactor to be integrated into multistep processes is illustrated by combining it with an Amberlyst scavenger and a solid acid catalyst, NbOPO4, to access a second product 3 that is obtained in a single telescoped process. The tricyclic scaffold in 3 is a motif found in several biologically active compounds and has possibilities as a synthon for new pharmaceutical products
    corecore