186 research outputs found

    The Sensitivity of Auditory-Motor Representations to Subtle Changes in Auditory Feedback While Singing

    Get PDF
    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers’ and untrained singers’ (nonsingers’) sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel /ta/ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers’ F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers’ models appear to be more sensitive in response to subtle discrepancies in auditory feedback

    A systems approach to model natural variation in reactive properties of bacterial ribosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural variation in protein output from translation in bacteria and archaea may be an organism-specific property of the ribosome. This paper adopts a systems approach to model the protein output as a measure of specific ribosome reactive properties in a ribosome-mediated translation apparatus. We use the steady-state assumption to define a transition state complex for the ribosome, coupled with mRNA, tRNA, amino acids and reaction factors, as a subsystem that allows a focus on the completed translational output as a measure of specific properties of the ribosome.</p> <p>Results</p> <p>In analogy to the steady-state reaction of an enzyme complex, we propose a steady-state translation complex for mRNA from any gene, and derive a maximum specific translation activity, <it>T</it><sub><it>a</it>(max)</sub>, as a property of the ribosomal reaction complex. <it>T</it><sub><it>a</it>(max) </sub>has units of <it>a</it>-protein output per time per <it>a</it>-specific mRNA. A related property of the ribosome, <inline-formula><m:math name="1752-0509-2-62-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:mover accent="true"><m:mi>T</m:mi><m:mo>˜</m:mo></m:mover><m:mrow><m:mi>a</m:mi><m:mo stretchy="false">(</m:mo><m:mi>max</m:mi><m:mo>⁡</m:mo><m:mo stretchy="false">)</m:mo></m:mrow></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGafmivaqLbaGaadaWgaaWcbaGaemyyaeMaeiikaGIagiyBa0MaeiyyaeMaeiiEaGNaeiykaKcabeaaaaa@3464@</m:annotation></m:semantics></m:math></inline-formula>, has units of <it>a</it>-protein per time per total RNA with the relationship <inline-formula><m:math name="1752-0509-2-62-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:mover accent="true"><m:mi>T</m:mi><m:mo>˜</m:mo></m:mover><m:mrow><m:mi>a</m:mi><m:mo stretchy="false">(</m:mo><m:mi>max</m:mi><m:mo>⁡</m:mo><m:mo stretchy="false">)</m:mo></m:mrow></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGafmivaqLbaGaadaWgaaWcbaGaemyyaeMaeiikaGIagiyBa0MaeiyyaeMaeiiEaGNaeiykaKcabeaaaaa@3464@</m:annotation></m:semantics></m:math></inline-formula> = <it>ρ</it><sub><it>a </it></sub><it>T</it><sub><it>a</it>(max)</sub>, where <it>ρ</it><sub><it>a </it></sub>represents the fraction of total RNA committed to translation output of <it>P</it><sub><it>a </it></sub>from gene <it>a </it>message. <it>T</it><sub><it>a</it>(max) </sub>as a ribosome property is analogous to <it>k</it><sub>cat </sub>for a purified enzyme, and <inline-formula><m:math name="1752-0509-2-62-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:msub><m:mover accent="true"><m:mi>T</m:mi><m:mo>˜</m:mo></m:mover><m:mrow><m:mi>a</m:mi><m:mo stretchy="false">(</m:mo><m:mi>max</m:mi><m:mo>⁡</m:mo><m:mo stretchy="false">)</m:mo></m:mrow></m:msub></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGafmivaqLbaGaadaWgaaWcbaGaemyyaeMaeiikaGIagiyBa0MaeiyyaeMaeiiEaGNaeiykaKcabeaaaaa@3464@</m:annotation></m:semantics></m:math></inline-formula> is analogous to enzyme specific activity in a crude extract.</p> <p>Conclusion</p> <p>Analogy to an enzyme reaction complex led us to a ribosome reaction model for measuring specific translation activity of a bacterial ribosome. We propose to use this model to design experimental tests of our hypothesis that specific translation activity is a ribosomal property that is subject to natural variation and natural selection much like <it>V</it><sub>max </sub>and <it>K</it><sub>m </sub>for any specific enzyme.</p

    Microtubule interfering agents and KSP inhibitors induce the phosphorylation of the nuclear protein p54(nrb), an event linked to G2/M arrest

    Get PDF
    Microtubule interfering agents (MIAs) are anti-tumor drugs that inhibit microtubule dynamics, while kinesin spindle protein (KSP) inhibitors are substances that block the formation of the bipolar spindle during mitosis. All these compounds cause G2/M arrest and cell death. Using 2D-PAGE followed by Nano-LC-ESI-Q-ToF analysis, we found that MIAs such as vincristine (Oncovin) or paclitaxel (Taxol) and KSP inhibitors such as S-tritil-l-cysteine induce the phosphorylation of the nuclear protein p54(nrb) in HeLa cells. Furthermore, we demonstrate that cisplatin (Platinol), an anti-tumor drug that does not cause M arrest, does not induce this modification. We show that the G2/M arrest induced by MIAs is required for p54(nrb) phosphorylation. Finally, we demonstrate that CDK activity is required for MIA-induced phosphorylation of p54(nrb)

    Examining the effect of state anxiety on compensatory and strategic adjustments in the planning of goal-directed aiming

    Get PDF
    The anxiety-perceptual-motor performance relationship may be enriched by investigations involving discrete manual responses due to the definitive demarcation of planning and control processes, which comprise the early and late portions of movement, respectively. To further examine the explanatory power of self-focus and distraction theories, we explored the potential of anxiety causing changes to movement planning that accommodate for anticipated negative effects in online control. As a result, we posed two hypotheses where anxiety causes performers to initially undershoot the target and enable more time to use visual feedback (“play-it-safe”), or fire a ballistic reach to cover a greater distance without later undertaking online control (“go-for-it”). Participants were tasked with an upper-limb movement to a single target under counter-balanced instructions to execute fast and accurate responses (low/normal anxiety) with non-contingent negative performance feedback (high anxiety). The results indicated that the previously identified negative impact of anxiety in online control was replicated. While anxiety caused a longer displacement to reach peak velocity and greater tendency to overshoot the target, there appeared to be no shift in the attempts to utilise online visual feedback. Thus, the tendency to initially overshoot may manifest from an inefficient auxiliary procedure that manages to uphold overall movement time and response accuracy

    The effect of social context on the use of visual information

    Get PDF
    Social context modulates action kinematics. Less is known about whether social context also affects the use of task relevant visual information. We tested this hypothesis by examining whether the instruction to play table tennis competitively or cooperatively affected the kind of visual cues necessary for successful table tennis performance. In two experiments, participants played table tennis in a dark room with only the ball, net, and table visible. Visual information about both players’ actions was manipulated by means of self-glowing markers. We recorded the number of successful passes for each player individually. The results showed that participants’ performance increased when their own body was rendered visible in both the cooperative and the competitive condition. However, social context modulated the importance of different sources of visual information about the other player. In the cooperative condition, seeing the other player’s racket had the largest effects on performance increase, whereas in the competitive condition, seeing the other player’s body resulted in the largest performance increase. These results suggest that social context selectively modulates the use of visual information about others’ actions in social interactions
    corecore