1,773 research outputs found

    A timely reminder of technical limitations

    Get PDF
    Peer reviewedPublisher PD

    Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil

    Get PDF
    Acknowledgments The authors are members of the Nitrous Oxide Research Alliance (NORA), a Marie Skłodowska-Curie ITN and research project under the EU's seventh framework program (FP7). GN is funded by the AXA Research Fund. The authors would like to thank Dr Nicholas Morley for assistance with gas chromatography, Dr Robin Walker and the SRUC Craibstone Estate (Aberdeen) for access to the agricultural plots and Dr Thomas Cornulier for statistical advice.Peer reviewedPublisher PD

    Putting science back into microbial ecology : a question of approach

    Get PDF
    Funding: This work was supported by the Natural Environment Research Council (grant no. NE/L006286/1). Acknowledgements: I am indebted to Dr Cécile Gubry-Rangin and Pro-fessor Graeme Nicol for invaluable comments on the manuscript Data accessibility: This article has no additional data. Competing interests: I declare I have no competing interests.Peer reviewedPostprin

    Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity

    Get PDF
    Background Theory suggests that biodiversity can act as a buffer against disturbances and environmental variability via two major mechanisms: Firstly, a stabilising effect by decreasing the temporal variance in ecosystem functioning due to compensatory processes; and secondly, a performance enhancing effect by raising the level of community response through the selection of better performing species. Empirical evidence for the stabilizing effect of biodiversity is readily available, whereas experimental confirmation of the performance-enhancing effect of biodiversity is sparse. Results Here, we test the effect of different environmental regimes (constant versus fluctuating temperature) on bacterial biodiversity-ecosystem functioning relations. We show that positive effects of species richness on ecosystem functioning are enhanced by stronger temperature fluctuations due to the increased performance of individual species. Conclusions Our results provide evidence for the performance enhancing effect and suggest that selection towards functionally dominant species is likely to benefit the maintenance of ecosystem functioning under more variable conditions

    Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota

    Get PDF
    © FEMS 2015. FUNDING EBW is funded by Centre for Genome Enabled Biology and Medicine, University of Aberdeen.Peer reviewedPublisher PD

    A model of hyphal tip growth involving microtubule-based transport

    Full text link
    We propose a simple model for mass transport within a fungal hypha and its subsequent growth. Inspired by the role of microtubule-transported vesicles, we embody the internal dynamics of mass inside a hypha with mutually excluding particles progressing stochastically along a growing one-dimensional lattice. The connection between long range transport of materials for growth, and the resulting extension of the hyphal tip has not previously been addressed in the modelling literature. We derive and analyse mean-field equations for the model and present a phase diagram of its steady state behaviour, which we compare to simulations. We discuss our results in the context of the filamentous fungus, Neurospora crassa.Comment: 5 pages, 5 figure

    Development and Certification of Ultrasonic Background Noise Test (UBNT) System for use on the International Space Station (ISS)

    Get PDF
    As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessmen

    Distributed Impact Detector System (DIDS) Health Monitoring System Evaluation

    Get PDF
    Damage due to impacts from micrometeoroids and orbital debris is one of the most significant on-orbit hazards for spacecraft. Impacts to thermal protection systems must be detected and the damage evaluated to determine if repairs are needed to allow safe re-entry. To address this issue for the International Space Station Program, Langley Research Center and Johnson Space Center technologists have been working to develop and implement advanced methods for detecting impacts and resultant leaks. LaRC funded a Small Business Innovative Research contract to Invocon, Inc. to develop special wireless sensor systems that are compact, light weight, and have long battery lifetimes to enable applications to long duration space structures. These sensor systems are known as distributed impact detection systems (DIDS). In an assessment, the NASA Engineering and Safety Center procured two prototype DIDS sensor units to evaluate their capabilities in laboratory testing and field testing in an ISS Node 1 structural test article. This document contains the findings of the assessment

    Approaches to understanding the ecology and evolution of understudied terrestrial archaeal ammonia-oxidisers

    Get PDF
    Funded by The Royal SocietyPeer reviewedPostprintPostprin
    corecore