243 research outputs found
Wie ewig sind die Denkmale? Von der Zeitgenossenschaft der Denkmale und der Denkmalpfleger
Veranstalter, Textauszug der Symposiums-Ankündigung vom Juni 2003, Fragen und Themen des Symposiums, Programmfolge, Teilnehmerlist
Abrupt reversal in emissions and atmospheric abundance of HCFC-133a (CF3CH2Cl)
Hydrochlorofluorocarbon HCFC-133a (CF3CH2Cl) is an anthropogenic compound whose consumption for emissive use is restricted under the Montreal Protocol. A recent study showed rapidly increasing atmospheric abundances and emissions. We report that, following this rise, the at- mospheric abundance and emissions have declined sharply in the past three years. We find a Northern Hemisphere HCFC-133a increase from 0.13 ppt (dry air mole fraction in parts-per-trillion) in 2000 to 0.50 ppt in 2012–mid-2013 followed by an abrupt reversal to 0.44 ppt by early 2015. Global emissions derived from these observations peaked at 3.1 kt in 2011, followed by a rapid decline of 0.5 kt yr−2 to 1.5 kt yr−1 in 2014. Sporadic HCFC-133a pollution events are detected in Europe from our high-resolution HCFC-133a records at three European stations, and in Asia from sam- ples collected in Taiwan. European emissions are estimated to be <0.1 kt yr−1 although emission hotspots were identi- fied in France
Recommended from our members
Reconciliation of halogen-induced ozone loss with the total-column ozone record
The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry–climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the effects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogen-induced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway
Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission
Understanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics
Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission
AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p
Programm der 7. Kunsthistorikerinnen-Tagung Berlin, 26. bis 29. September 2002
Hier kann das Programm der 7. Kunsthistorikerinnen-Tagung, die unter dem Titel "(Neue) Medien. Medialität, Kultureller Transfer, Geschlecht" vom 26. bis 29. September 2002 in Berlin stattfindet, runtergeladen werden. Tagungsort ist die Humboldt Universität zu Berlin. Alle weiteren Informationen sind dem Programm zu entnehmen
Tagungsprogramm und Teilnehmer
Tagungsprogramm, Teilnehme
ICOMOS-Workshop "European Heritage Label und Weltkulturerbe" am 20./21. November 2009 in Berlin
Programm und Teilnehme
- …