135 research outputs found

    Invertebrate DNA metabarcoding reveals changes in communities across mine site restoration chronosequences

    Get PDF
    Invertebrate biomonitoring can reveal crucial information about the status of restoration projects; however, it is routinely underused because of the high level of taxonomic expertise and resources required. Invertebrate DNA metabarcoding has been used to characterize invertebrate biodiversity but its application in restoration remains untested. We use DNA metabarcoding, a new approach for restoration assessment, to explore the invertebrate composition from pitfall traps at two mine site restoration chronosequences in southwestern Australia. Invertebrates were profiled using two cytochrome oxidase subunit 1 assays to investigate invertebrate biodiversity. The data revealed differences between invertebrate communities at the two mines and between the different age plots of the chronosequences. Several characteristic taxa were identified for each age within the chronosequence, including springtails within the youngest sites (Order: Collembola) and millipedes within the oldest and reference sites (Order: Julida). This study facilitates development of a molecular “toolkit” for the monitoring of ecological restoration projects. We suggest that a metabarcoding approach shows promise in complementing current monitoring practices that rely on alpha taxonomy

    TERN, Australia's land observatory: addressing the global challenge of forecasting ecosystem responses to climate variability and change

    Get PDF
    The global challenge of understanding and forecasting ecosystem responses to climate extremes and climate change is addressed in this review of research enabled through environmental research infrastructure (RI) provided by Australia's Terrestrial Ecosystem Research Network (TERN). Two primary climatic drivers of ecosystem structure and function in Australia are fire and aridity, to which Australian flora and fauna have shown marked adaptability. Australian vegetation shows resilience to climate extremes of flooding rains, droughts and heatwaves such that variability in primary productivity of Australian vegetation has a tangible effect on the global carbon cycle. Nonetheless, Australian flora and ecosystems could be vulnerable to projected climate change (e.g. to increasing vapour pressure deficit). Refugia are also vulnerable to climate change, with conditions in these areas already near the tipping point for a change in community composition. Ensuring genetic diversity during directional change in climate (e.g. increasing aridity) requires proactive approaches to conservation and restoration projects. To address these challenges, TERN provides environmental RI at three scales of observation: (i) environmental monitoring using remote sensing techniques at a landscape and continental scale; (ii) a spatially extensive network of ecosystem monitoring plots; and (iii) intensely measured sites collecting detailed data on ecosystem processes. Through partnerships with international environmental RIs, TERN enables research that addresses global challenges, on the first steps toward the forecasting of ecosystem-climate interactions

    Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient

    Get PDF
    Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites

    An introduction to the Australian and New Zealand flux tower network - OzFlux

    Get PDF
    © Author(s) 2016. OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m-2 yr-1) and the natural raised peat bog site having a very low GPP (820 gC m-2 yr-1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia

    The impact of large scale licensing examinations in highly developed countries: a systematic review

    Get PDF
    BACKGROUND: To investigate the existing evidence base for the validity of large-scale licensing examinations including their impact. METHODS: Systematic review against a validity framework exploring: Embase (Ovid Medline); Medline (EBSCO); PubMed; Wiley Online; ScienceDirect; and PsychINFO from 2005 to April 2015. All papers were included when they discussed national or large regional (State level) examinations for clinical professionals, linked to examinations in early careers or near the point of graduation, and where success was required to subsequently be able to practice. Using a standardized data extraction form, two independent reviewers extracted study characteristics, with the rest of the team resolving any disagreement. A validity framework was used as developed by the American Educational Research Association, American Psychological Association, and National Council on Measurement in Education to evaluate each paper’s evidence to support or refute the validity of national licensing examinations. RESULTS: 24 published articles provided evidence of validity across the five domains of the validity framework. Most papers (n = 22) provided evidence of national licensing examinations relationships to other variables and their consequential validity. Overall there was evidence that those who do well on earlier or on subsequent examinations also do well on national testing. There is a correlation between NLE performance and some patient outcomes and rates of complaints, but no causal evidence has been established. CONCLUSIONS: The debate around licensure examinations is strong on opinion but weak on validity evidence. This is especially true of the wider claims that licensure examinations improve patient safety and practitioner competence

    Population Genetic Diversity and Structure of a Naturally Isolated Plant Species, Rhodiola dumulosa (Crassulaceae)

    Get PDF
    Aims: Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Methods: Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. Important Findings: The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Populationstructure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei’s gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in th

    Photochemical activation of TRPA1 channels in neurons and animals

    Get PDF
    Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild type animals. Surprisingly, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in non-transgenic animals, including humans

    Eaten out of house and home:impacts of grazing on ground-dwelling reptiles in Australian grasslands and grassy woodlands

    Get PDF
    Large mammalian grazers can alter the biotic and abiotic features of their environment through their impacts on vegetation. Grazing at moderate intensity has been recommended for biodiversity conservation. Few studies, however, have empirically tested the benefits of moderate grazing intensity in systems dominated by native grazers. Here we investigated the relationship between (1) density of native eastern grey kangaroos, Macropus giganteus, and grass structure, and (2) grass structure and reptiles (i.e. abundance, richness, diversity and occurrence) across 18 grassland and grassy Eucalyptus woodland properties in south-eastern Australia. There was a strong negative relationship between kangaroo density and grass structure after controlling for tree canopy cover. We therefore used grass structure as a surrogate for grazing intensity. Changes in grazing intensity (i.e. grass structure) significantly affected reptile abundance, reptile species richness, reptile species diversity, and the occurrence of several ground-dwelling reptiles. Reptile abundance, species richness and diversity were highest where grazing intensity was low. Importantly, no species of reptile was more likely to occur at high grazing intensities. Legless lizards (Delma impar, D. inornata) were more likely to be detected in areas subject to moderate grazing intensity, whereas one species (Hemiergis talbingoensis) was less likely to be detected in areas subject to intense grazing and three species (Menetia greyii, Morethia boulengeri, and Lampropholis delicata) did not appear to be affected by grazing intensity. Our data indicate that to maximize reptile abundance, species richness, species diversity, and occurrence of several individual species of reptile, managers will need to subject different areas of the landscape to moderate and low grazing intensities and limit the occurrence and extent of high grazing

    Operationalizing local ecological knowledge in climate change research : challenges and opportunities of citizen science

    Get PDF
    Current research on the local impacts of climate change is based on contrasting results from the simulation of historical trends in climatic variables produced with global models against climate data from independent observations. To date, these observations have mostly consisted of weather data from standardized meteorological stations. Given that the spatial distribution of weather stations is patchy, climate scientists have called for the exploration of new data sources. Knowledge developed by Indigenous Peoples and local communities with a long history of interaction with their environment has been proposed as a data source with untapped potential to contribute to our understanding of the local impacts of climate change. In this chapter, we discuss an approach that aims to bring insights from local knowledge systems to climate change research. First, we present a number of theoretical arguments that give support to the idea that local knowledge systems can contribute in original ways to the endeavors of climate change research. Then, we explore the potential of using information and communication technologies to gather and share local knowledge of climate change impacts. We do so through the examination of a citizen science initiative aiming to collect local indicators of climate change impacts: the LICCI project (www.licci.eu). Our findings illustrate that citizen science can inspire new approaches to articulate the inclusion of local knowledge systems in climate change research. However, this requires outlining careful approaches, with high ethical standards, toward knowledge validation and recognizing that there are aspects of local ecological knowledge that are incommensurable with scientific knowledge
    • 

    corecore