3,121 research outputs found

    Adsorption, Segregation and Magnetization of a Single Mn Adatom on the GaAs (110) Surface

    Full text link
    Density functional calculations with a large unit cell have been conducted to investigate adsorption, segregation and magnetization of Mn monomer on GaAs(110). The Mn adatom is rather mobile along the trench on GaAs(110), with an energy barrier of 0.56 eV. The energy barrier for segregation across the trenches is nevertheless very high, 1.67 eV. The plots of density of states display a wide gap in the majority spin channel, but show plenty of metal-induced gap states in the minority spin channel. The Mn atoms might be invisibl in scanning tunneling microscope (STM) images taken with small biases, due to the directional p-d hybridization. For example, one will more likely see two bright spots on Mn/GaAs(110), despite the fact that there is only one Mn adatom in the system

    Adopting a population-level approach to parenting and family support intervention

    Get PDF
    Evidence-based treatments and preventive interventions in the child and family area have not met with widespread adoption by practitioners. Despite the high prevalence of child behavioral and emotional problems, many parents and families in need are not receiving or participating in services, and when they do, the most efficacious interventions are not what is usually provided. Simultaneously addressing the issues of low penetration and insufficient dissemination of evidence-based programming requires a population approach to parenting and family support and intervention. Process issues are important, particularly in relation to engagement of stakeholders, recruitment of practitioners, consideration of organizational factors, and use of media and communication strategies. This article discusses why there is a need for a population-based approach, provides a framework of how to conceptualize such an approach, and describes an example from our own work of a recently initiated prevention trial that illustrates a population-based approach in action. The rationale, structure, and goals of the Triple P System Population Trial are described in the context of the aforementioned population framework. (C) 2007 Elsevier Ltd. All rights reserved

    An extreme ultraviolet spectrometer experiment for the Shuttle Get Away Special Program

    Get PDF
    An extreme ultraviolet (EUV) spectrometer experiment operated successfully during the STS-7 mission in an experiment to measure the global and diurnal variation of the EUV airglow. The spectrometer is an F 3.5 Wadsworth mount with mechanical collimator, a 75 x 75 mm grating, and a bare microchannel plate detector providing a spectral resolution of 7 X FWHM. Read-out of the signal is through discrete channels or resistive anode techniques. The experiment includes a microcomputer, 20 Mbit tape recorder, and a 28V, 40 Ahr silver-zinc battery. It is the first GAS payload to use an opening door. The spectrometer's 0.1 x 4.2 deg field of view is pointed vertically out of the shuttle bay. During the STS-7 flight data were acquired continuously for a period of 5 hours and 37 minutes, providing spectra of the 570 A to 850 A wavelength region of the airglow. Five diurnal cycles of the 584 A emission of neutral helium and the 834 A emission of ionized atomic oxygen were recorded. The experiment also recorded ion events and pressure pulses associated with thruster firings. The experiment is to fly again on Mission 41-F

    Superlattice properties of carbon nanotubes in a transverse electric field

    Get PDF
    Electron motion in a (n,1) carbon nanotube is shown to correspond to a de Broglie wave propagating along a helical line on the nanotube wall. This helical motion leads to periodicity of the electron potential energy in the presence of an electric field normal to the nanotube axis. The period of this potential is proportional to the nanotube radius and is greater than the interatomic distance in the nanotube. As a result, the behavior of an electron in a (n,1) nanotube subject to a transverse electric field is similar to that in a semiconductor superlattice. In particular, Bragg scattering of electrons from the long-range periodic potential results in the opening of gaps in the energy spectrum of the nanotube. Modification of the bandstructure is shown to be significant for experimentally attainable electric fields, which raises the possibility of applying this effect to novel nanoelectronic devices.Comment: 7 pages, 3 figure

    Effect of antimony on the eutectic reaction of heavy section spheroidal graphite castings

    Get PDF
    There is a strong demand for heavy section castings made of spheroidal graphite with a fully ferritic matrix, e.g. for manufacturing hubs for windmills. Such castings with slow solidification process are prone to graphite degeneration that leads to a dramatic decrease of the mechanical properties of the cast parts. Chunky graphite is certainly the most difficult case of graphite degeneracy, though it has long been known that the limited and controlled addition of antimony may help eliminate it. The drawback of this remedy is that too large Sb additions lead to other forms of degenerate graphite, and also that antimony is a pearlite promoter. As part of an investigation aimed at mastering low level additions to cast iron melts before casting, solidification of large blocks with or without Sb added was followed by thermal analysis. Comparison of the cooling curves and of the microstructures of these different castings gives suggestions to understand the controlling nucleation and growth mechanisms for chunky graphite cells

    Structural and magnetic properties of an InGaAs/Fe3_3Si superlattice in cylindrical geometry

    Full text link
    The structure and the magnetic properties of an InGaAs/Fe3Si superlattice in a cylindrical geometry are investigated by electron microscopy techniques, x-ray diffraction and magnetometry. To form a radial superlattice, a pseudomorphic InGaAs/Fe3As bilayer has been released from its substrate self-forming into a rolled-up microtube. Oxide-free interfaces as well as areas of crystalline bonding are observed and an overall lattice mismatch between succeeding layers is determined. The cylindrical symmetry of the final radial superlattice shows a significant effect on the magnetization behavior of the rolled-up layers

    Quantum Dot as Spin Filter and Spin Memory

    Full text link
    We consider a quantum dot in the Coulomb blockade regime weakly coupled to current leads and show that in the presence of a magnetic field the dot acts as an efficient spin-filter (at the single-spin level) which produces a spin-polarized current. Conversely, if the leads are fully spin-polarized the up or down state of the spin on the dot results in a large sequential or small cotunneling current, and thus, together with ESR techniques, the setup can be operated as a single-spin memory.Comment: 4 pages, 3 figures, REVTe

    Can Modus Vivendi Save Liberalism from Moralism? A Critical Assessment of John Gray’s Political Realism

    Get PDF
    This chapter assesses John Gray’s modus vivendi-based justification for liberalism. I argue that his approach is preferable to the more orthodox deontological or teleological justificatory strategies, at least because of the way it can deal with the problem of diversity. But then I show how that is not good news for liberalism, for grounding liberal political authority in a modus vivendi undermines liberalism’s aspiration to occupy a privileged normative position vis-à-vis other kinds of regimes. So modus vivendi can save liberalism from moralism, but at cost many liberals will not be prepared to pay
    • …
    corecore