5,097 research outputs found
Kelvin-Helmholtz Instability of Relativistic Beams
A discussion of the linearized Kelvin–Helmholtz instability in the vicinity of a plane infinite vortex sheet separating two fluids in relative motion is presented. The calculation generalizes existing treatments to include relativistic relative motion and relativistic internal sound speeds. The character of the unstable modes is outlined in the two limits (a) when the sound speed ratio is large, and (b) when it is equal to unity. The relevance of these results to beam models of extragalactic radio sources is briefly discussed
Megamaser Disks in Active Galactic Nuclei
Recent spectroscopic and VLBI-imaging observations of bright extragalactic
water maser sources have revealed that the megamaser emission often originates
in thin circumnuclear disks near the centers of active galactic nuclei (AGNs).
Using general radiative and kinematic considerations and taking account of the
observed flux variability, we argue that the maser emission regions are clumpy,
a conclusion that is independent of the detailed mechanism (X-ray heating,
shocks, etc.) driving the collisionally pumped masers. We examine scenarios in
which the clumps represent discrete gas condensations (i.e., clouds) and do not
merely correspond to velocity irregularities in the disk. We show that even two
clouds that overlap within the velocity coherence length along the line of
sight could account (through self-amplification) for the entire maser flux of a
high-velocity ``satellite'' feature in sources like NGC 4258 and NGC 1068, and
we suggest that cloud self-amplification likely contributes also to the flux of
the background-amplifying ``systemic'' features in these objects. Analogous
interpretations have previously been proposed for water maser sources in
Galactic star-forming regions. We argue that this picture provides a natural
explanation of the time-variability characteristics of extragalactic megamaser
sources and of their apparent association with Seyfert 2-like galaxies. We also
show that the requisite cloud space densities and internal densities are
consistent with the typical values of nuclear (broad emission-line region-type)
clouds.Comment: 55 pages, 7 figures, AASTeX4.0, to appear in The Astrophysical
Journal (1999 March 1 issue
Hercules X-1: Empirical Models of UV Emission Lines
The UV emission lines of Hercules X-1, resolved with the HST GHRS and STIS,
can be divided into broad (FWHM 750 km/s) and narrow (FWHM 150 km/s)
components. The broad lines can be unambiguously identified with emission from
an accretion disk which rotates prograde with the orbit. The narrow lines,
previously identified with the X-ray illuminated atmosphere of the companion
star, are blueshifted at both phi=0.2 and phi=0.8 and the line flux at phi=0.2
is 0.2 of the flux at phi=0.8. Line ratio diagnostics show that the density of
the narrow line region is log n=13.4+/-0.2 and the temperature is
T=1.0+/-0.2x10^5 K. The symmetry of the eclipse ingress suggests that the line
emission on the surface of the disk is left-right symmetric relative to the
orbit. Model fits to the O V, Si IV, and He II line profiles agree with this
result, but fits to the N V lines suggest that the receding side of the disk is
brighter. We note that there are narrow absorption components in the N V lines
with blueshifts of 500 km/s.Comment: To be published in the Astrophysical Journa
Warped discs and the directional stability of jets in Active Galactic Nuclei
Warped accretion discs in Active Galactic Nuclei (AGN) exert a torque on the
black hole that tends to align the rotation axis with the angular momentum of
the outer disc. We compute the magnitude of this torque by solving numerically
for the steady state shape of the warped disc, and verify that the analytic
solution of Scheuer and Feiler (1996) provides an excellent approximation. We
generalise these results for discs with strong warps and arbitrary surface
density profiles, and calculate the timescale on which the black hole becomes
aligned with the angular momentum in the outer disc. For massive holes and
accretion rates of the order of the Eddington limit the alignment timescale is
always short (less than a Myr), so that jets accelerated from the inner disc
region provide a prompt tracer of the angular momentum of gas at large radii in
the disc. Longer timescales are predicted for low luminosity systems, depending
on the degree of anisotropy in the disc's hydrodynamic response to shear and
warp, and for the final decay of modest warps at large radii in the disc that
are potentially observable via VLBI. We discuss the implications of this for
the inferred accretion history of those Active Galactic Nuclei whose jet
directions appear to be stable over long timescales. The large energy
deposition rate at modest disc radii during rapid realignment episodes should
make such objects transiently bright at optical and infrared wavelengths.Comment: MNRAS, in press. Revised to match accepted version, with one new
figure showing alignment timescale as a function of black hole mas
Reaching older people with PA delivered in football clubs: the reach, adoption and implementation characteristics of the Extra Time Programme.
Background Older adults (OA) represent a core priority group for physical activity and Public Health policy. As a result, significant interest is placed on how to optimise adherence to interventions promoting these approaches. Extra Time (ET) is an example of a national programme of physical activity interventions delivered in professional football clubs for OA aged 55+ years. This paper aims to examine the outcomes from ET, and unpick the processes by which these outcomes were achieved. Methods This paper represents a secondary analysis of data collected during the evaluation of ET. From the 985 OA reached by ET, n=486 adopted the programme and completed post-intervention surveys (typically 12 weeks). We also draw on interview data with 18 ET participants, and 7 staff who delivered the programme. Data were subject to thematic analysis to generate overarching and sub themes. Results Of the 486 participants, the majority 95%, (n= 462) were White British and 59.7% (n=290) were female. Most adopters (65.4%/n=318) had not participated in previous interventions in the host clubs. Social interaction was the most frequently reported benefit of participation (77.2%, n=375). While the reach of the club badge was important in letting people know about the programme, further work enhanced adoption and satisfaction. These factors included (i) listening to participants, (ii) delivering a flexible age-appropriate programme of diverse physical and social activities, (iii) offering activities which satisfy energy drives and needs for learning and (iv) extensive opportunities for social engagement. Conclusions Findings emerging from this study indicate that physical activity and health interventions delivered through professional football clubs can be effective for engaging OA
Generation of potential/surface density pairs in flat disks Power law distributions
We report a simple method to generate potential/surface density pairs in flat
axially symmetric finite size disks. Potential/surface density pairs consist of
a ``homogeneous'' pair (a closed form expression) corresponding to a uniform
disk, and a ``residual'' pair. This residual component is converted into an
infinite series of integrals over the radial extent of the disk. For a certain
class of surface density distributions (like power laws of the radius), this
series is fully analytical. The extraction of the homogeneous pair is
equivalent to a convergence acceleration technique, in a matematical sense. In
the case of power law distributions, the convergence rate of the residual
series is shown to be cubic inside the source. As a consequence, very accurate
potential values are obtained by low order truncation of the series. At zero
order, relative errors on potential values do not exceed a few percent
typically, and scale with the order N of truncation as 1/N**3. This method is
superior to the classical multipole expansion whose very slow convergence is
often critical for most practical applications.Comment: Accepted for publication in Astronomy & Astrophysics 7 pages, 8
figures, F90-code available at
http://www.obs.u-bordeaux1.fr/radio/JMHure/intro2applawd.htm
Tracking the Orbital and Super-orbital Periods of SMC X-1
The High Mass X-ray Binary (HMXB) SMC X-1 demonstrates an orbital variation
of 3.89 days and a super-orbital variation with an average length of 55 days.
As we show here, however, the length of the super-orbital cycle varies by
almost a factor of two, even across adjacent cycles. To study both the orbital
and super-orbital variation we utilize lightcurves from the Rossi X-ray Timing
Explorer All Sky Monitor (RXTE-ASM). We employ the orbital ephemeris from
Wojdowski et al. (1998) to obtain the average orbital profile, and we show that
this profile exhibits complex modulation during non-eclipse phases.
Additionally, a very interesting ``bounceback'' in X-ray count rate is seen
during mid-orbital eclipse phases, with a softening of the emission during
these periods. This bounceback has not been previously identified in pointed
observations. We then define a super-orbital ephemeris (the phase of the
super-orbital cycle as a function of date) based on the ASM lightcurve and
analyze the trend and distribution of super-orbital cycle lengths. SMC X-1
exhibits a bimodal distribution of these lengths, similar to what has been
observed in other systems (e.g., Her X-1), but with more dramatic changes in
cycle length. There is some hint, but not conclusive evidence, for a dependence
of the super-orbital cycle length upon the underlying orbital period, as has
been observed previously for Her X-1 and Cyg X-2. Using our super-orbital
ephemeris we are also able to create an average super-orbital profile over the
71 observed cycles, for which we witness overall hardening of the spectrum
during low count rate times. We combine the orbital and super-orbital
ephemerides to study the correlation between the orbital and super-orbital
variations in the system.Comment: 10 pages, using emulateapj style. To be published in the
Astrophysical Journa
- …
