1,716 research outputs found
Many-body orbital paramagnetism in doped graphene sheets
The orbital magnetic susceptibility (OMS) of a gas of noninteracting massless
Dirac fermions is zero when the Fermi energy is away from the Dirac point.
Making use of diagrammatic perturbation theory, we calculate exactly the OMS of
massless Dirac fermions to first order in the Coulomb interaction demonstrating
that it is finite and positive. Doped graphene sheets are thus unique systems
in which the OMS is completely controlled by many-body effects.Comment: 4 pages, 2 figures, submitte
Theory of Coulomb drag for massless Dirac fermions
Coulomb drag between two unhybridized graphene sheets separated by a
dielectric spacer has recently attracted considerable theoretical interest. We
first review, for the sake of completeness, the main analytical results which
have been obtained by other authors. We then illustrate pedagogically the
minimal theory of Coulomb drag between two spatially-separated two-dimensional
systems of massless Dirac fermions which are both away from the
charge-neutrality point. This relies on second-order perturbation theory in the
screened interlayer interaction and on Boltzmann transport theory. In this
theoretical framework and in the low-temperature limit, we demonstrate that, to
leading (i.e. quadratic) order in temperature, the drag transresistivity is
completely insensitive to the precise intralayer momentum-relaxation mechanism
(i.e. to the functional dependence of the scattering time on energy). We also
provide analytical results for the low-temperature drag transresistivity for
both cases of "thick" and "thin" spacers and for arbitrary values of the
dielectric constants of the media surrounding the two Dirac-fermion layers.
Finally, we present numerical results for the low-temperature drag
transresistivity in the case in which one of the media surrounding the
Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude
by suggesting an experiment that can potentially allow for the observation of
departures from the canonical Fermi-liquid quadratic-in-temperature behavior of
the transresistivity.Comment: 20 pages, 4 figure
Water vapour permeability of clay bricks
The water vapour permeability of clay bricks has been experimentally measured in order to draw a representative outline of industrial products without pore-forming additives. The correlations between water vapour permeability and the main compositional and microstructural parameters of both bricks and clay bodies have been investigated. A statistical model was set up in order to predict with reasonable precision and reliability, the water vapour permeability on the basis of open porosity, bulk density, mean pore size and pore specific surface values of bricks, and the finer particle size of clay bodies
Thermal conductivity of clay bricks
In the present work the thermal conductivity of 29 samples of clay bricks was measured and the correlations of the thermal performance with the compositional, physical, and microstructural features of products were investigated. The results obtained directed our attention toward a better understanding of the role played by some parameters (i.e., mineralogical components and pore size distribution), other than bulk density, in improving or depressing the insulating properties of bricks. Among them, the unfavorable role of quartz, Ca-rich silicates, and amorphous phase came out, while the role of pore size and specific surface should be more accurately evaluated in the structural design of materials
On Coulomb drag in double layer systems
We argue, for a wide class of systems including graphene, that in the low
temperature, high density, large separation and strong screening limits the
drag resistivity behaves as d^{-4}, where d is the separation between the two
layers. The results are independent of the energy dispersion relation, the
dependence on momentum of the transport time, and the wave function structure
factors. We discuss how a correct treatment of the electron-electron
interactions in an inhomogeneous dielectric background changes the theoretical
analysis of the experimental drag results of Ref. [1]. We find that a
quantitative understanding of the available experimental data [1] for drag in
graphene is lacking.Comment: http://iopscience.iop.org/0953-8984/24/33/335602
Many-Body Orbital Paramagnetism in Doped Graphene Sheets
URL:http://link.aps.org/doi/10.1103/PhysRevLett.104.225503
DOI:10.1103/PhysRevLett.104.225503The orbital magnetic susceptibility of a gas of noninteracting massless Dirac fermions is zero when the Fermi energy is away from the Dirac point. Making use of diagrammatic perturbation theory, we calculate exactly the orbital magnetic susceptibility of massless Dirac fermions to first order in the Coulomb interaction demonstrating that it is finite and positive. Doped graphene sheets are thus unique systems in which the orbital magnetic susceptibility is completely controlled by many-body effects.We acknowledge financial support by the 2009/2010 CNR-CSIC scientific cooperation project (M. P.), by the NSF Grant No. DMR-0705460 (G.V.), and by FOM, the
Netherlands (M. I. K.)
Intestinal tuberculosis in a child living in a country with a low incidence of tuberculosis: a case report
Background: Relatively common in adults, intestinal tuberculosis is considered rare in children and adolescents. The protean manifestations of intestinal tuberculosis mean that the diagnosis is often delayed (sometimes even for years), thus leading to increased mortality and unnecessary surgery. The main diagnostic dilemma is to differentiate intestinal tuberculosis and Crohn’s disease because a misdiagnosis can have dramatic consequences.
Case presentation: A 13-year-old Caucasian, Italian female adolescent attended the Emergency Department complaining of abdominal pain, a fever of up to 38°C, night sweats, diarrhea with blood in stool, and a weight loss of about three kilograms over the previous two months. Physical examination revealed a marked skin pallor and considerable abdominal distension with relevant discomfort in all the abdominal quadrant. Laboratory tests revealed a decreased white blood cell count with anemia and increased C-reactive protein levels. The Mantoux tuberculin skin test was negative. A chest X-ray and an abdominal ultrasonography did not reveal any significant findings. The patient underwent colonoscopy that showed diffuse mucosal congestion and significant blood loss, and laparatomy showed small bowel and colon loops with a whitish appearance. A biopsy of the ileal mucosa revealed inflammation with noncaseating granulomas possibly due to bacterial infection. Given the suspicion of an opportunistic bacterial infection in a child with chronic inflammatory bowel disease (possibly Crohn’s disease), treatment with a third-generation cephalosporin was started. However, the abdominal pain, fever and poor general condition persisted and so, after 11 days, the patient underwent total body computed tomography and magnetic resonance imaging of the brain. On the basis of the radiological findings, miliary tuberculosis was suspected and bronchoscopy was performed and resulted positive for Mycobacterium tuberculosis. Miliary tuberculosis was confirmed and an effective treatment with four drugs was started.
Conclusion: This case shows that the manifestations of intestinal tuberculosis can be very difficult to diagnose and mimic those of Chron’s disease. Total body computed tomography and laparotomy with an intestinal biopsy for the detection of Mycobacterium tuberculosis are the means of avoid the risks of a misdiagnosis in children with unexplained chronic abdominal problems
Negative local resistance caused by viscous electron backflow in graphene
Graphene hosts a unique electron system in which electron-phonon scattering
is extremely weak but electron-electron collisions are sufficiently frequent to
provide local equilibrium above liquid nitrogen temperature. Under these
conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic
phenomena similar to classical liquids. Here we report strong evidence for this
transport regime. We find that doped graphene exhibits an anomalous (negative)
voltage drop near current injection contacts, which is attributed to the
formation of submicrometer-size whirlpools in the electron flow. The viscosity
of graphene's electron liquid is found to be ~0.1 m /s, an order of
magnitude larger than that of honey, in agreement with many-body theory. Our
work shows a possibility to study electron hydrodynamics using high quality
graphene
- …
