6,698 research outputs found

    Discovery of 36 eclipsing EL CVn binaries found by the Palomar Transient Factory

    Get PDF
    We report the discovery and analysis of 36 new eclipsing EL CVn-type binaries, consisting of a core helium-composition pre-white dwarf and an early-type main-sequence companion, more than doubling the known population of these systems. We have used supervised machine learning methods to search 0.8 million lightcurves from the Palomar Transient Factory, combined with SDSS, Pan-STARRS and 2MASS colours. The new systems range in orbital periods from 0.46-3.8 d and in apparent brightness from ~14-16 mag in the PTF RR or gg^{\prime} filters. For twelve of the systems, we obtained radial velocity curves with the Intermediate Dispersion Spectrograph at the Isaac Newton Telescope. We modelled the lightcurves, radial velocity curves and spectral energy distributions to determine the system parameters. The radii (0.3-0.7 R\mathrm{R_{\odot}}) and effective temperatures (8000-17000 K) of the pre-He-WDs are consistent with stellar evolution models, but the masses (0.12-0.28 M\mathrm{M_{\odot}}) show more variance than models predicted. This study shows that using machine learning techniques on large synoptic survey data is a powerful way to discover substantial samples of binary systems in short-lived evolutionary stages

    Solar High-energy Astrophysical Plasmas Explorer (SHAPE). Volume 1: Proposed concept, statement of work and cost plan

    Get PDF
    The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons

    EXIST: The Ultimate Spatial/Temporal Hard X-ray Survey

    Get PDF
    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed mission to conduct an all-sky imaging hard x-ray (HX) survey (~5–600 keV) with ~0.05mCrab sensitivity (5σ; 6mo.; ~5–100keV) comparable to the ROSAT soft x-ray survey, and to provide the maximum sensitivity and resolution (spatial and temporal) HX imager as the Next Generation GRB mission. Its primary science goals are to i) identify and measure obscured AGN and constrain the accretion luminosity of the universe as well as the cosmic IR background from Blazar spectra coincident with GeV-TeV observations, ii) measure spectra, variability and locations for the faintest GRBs to study the most energetic events in the universe and the earliest epoch of star formation, and iii) study black holes on all scales, from x-ray transients to luminous AGN. EXIST would incorporate a very large area (~8m^2) imaging Cd-Zn-Te detector and coded aperture telescope array with nearly half-sky instantaneous view which images the full sky each orbit. With fixed zenith pointing, it could be mounted on the ISS or a free flyer and would complement both GLAST and Constellation-X science if launched before 2010, as recommended by the Astronomy and Astrophysics Decadal Survey

    Unequal Mass Binary Black Hole Plunges and Gravitational Recoil

    Full text link
    We present results from fully nonlinear simulations of unequal mass binary black holes plunging from close separations well inside the innermost stable circular orbit with mass ratios q = M_1/M_2 = {1,0.85,0.78,0.55,0.32}, or equivalently, with reduced mass parameters η=M1M2/(M1+M2)2=0.25,0.248,0.246,0.229,0.183\eta=M_1M_2/(M_1+M_2)^2 = {0.25, 0.248, 0.246, 0.229, 0.183}. For each case, the initial binary orbital parameters are chosen from the Cook-Baumgarte equal-mass ISCO configuration. We show waveforms of the dominant l=2,3 modes and compute estimates of energy and angular momentum radiated. For the plunges from the close separations considered, we measure kick velocities from gravitational radiation recoil in the range 25-82 km/s. Due to the initial close separations our kick velocity estimates should be understood as a lower bound. The close configurations considered are also likely to contain significant eccentricities influencing the recoil velocity.Comment: 12 pages, 5 figures, to appear in "New Frontiers" special issue of CQ

    Electronic, mobile and telehealth tools for vulnerable patients with chronic disease: A systematic review and realist synthesis

    Get PDF
    Objectives The objective of this review was to assess the benefit of using electronic, mobile and telehealth tools for vulnerable patients with chronic disease and explore the mechanisms by which these impact patient self-efficacy and self-management. Design We searched MEDLINE, all evidence-based medicine, CINAHL, Embase and PsychINFO covering the period 2009 to 2018 for electronic, mobile or telehealth interventions. Quality was assessed according to rigour and relevance. Those studies providing a richer description ('thick') were synthesised using a realist matrix. Setting and participants Studies of any design conducted in community-based primary care involving adults with one or more diagnosed chronic health condition and vulnerability due to demographic, geographic, economic and/or cultural characteristics. Results Eighteen trials were identified targeting a range of chronic conditions and vulnerabilities. The data provided limited insight into the mechanisms underpinning these interventions, most of which sought to persuade vulnerable patients into believing they could self-manage their conditions through improved symptom monitoring, education and support and goal setting. Patients were relatively passive in the interaction, and the level of patient response attributed to their intrinsic level of motivation. Health literacy, which may be confounded with motivation, was only measured in one study, and eHealth literacy was not assessed. Conclusions Research incorporating these tools with vulnerable groups is not comprehensive. Apart from intrinsic motivation, health literacy may also influence the reaction of vulnerable groups to technology. Social persuasion was the main way interventions sought to achieve better self-management. Efforts to engage patients by healthcare providers were lower than expected. Use of social networks or other eHealth mechanisms to link patients and provide opportunities for vicarious experience could be further explored in relation to vulnerable groups. Future research could also assess health and eHealth literacy and differentiate the specific needs for vulnerable groups when implementing health technologies

    Low-Temperature Physics

    Get PDF
    Contains reports on four research projects

    Chasing Clarity: Rumination as a Strategy for Making Sense of Emotions

    Get PDF
    Research is needed on the affective mechanisms that motivate people to ruminate. One possibility is that some people might ruminate in response to deficits in emotional clarity because not knowing how they feel might be intolerable to them. We tested the hypothesis that the relationship between low emotional clarity and rumination would be moderated by intolerance of ambiguity. Participants in a longitudinal online study (N = 195) provided self- reports of intolerance of ambiguity and rumination and reported state emotional clarity following an idiographic mood induction; three weeks later they reported on rumination again. As predicted, participants with low emotional clarity at Time 1 ruminated more three weeks later, but only if they were intolerant of ambiguity. Findings support the notion that rumination sometimes functions as a search for answers about emotions. We discuss implications for understanding the affective disturbances perpetuating vicious cycles of rumination and for rumination-focused clinical interventions

    Intensity Inhomogeneity Correction of SD-OCT Data Using Macular Flatspace

    Get PDF
    Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity inhomogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisition, signal attenuation, multi-frame averaging, and vignetting, making it difficult to correct the data in a fundamental way. This paper presents a method for inhomogeneity correction by acting to reduce the variability of intensities within each layer. In particular, the N3 algorithm, which is popular in neuroimage analysis, is adapted to work for OCT data. N3 works by sharpening the intensity histogram, which reduces the variation of intensities within different classes. To apply it here, the data are first converted to a standardized space called macular flat space (MFS). MFS allows the intensities within each layer to be more easily normalized by removing the natural curvature of the retina. N3 is then run on the MFS data using a modified smoothing model, which improves the efficiency of the original algorithm. We show that our method more accurately corrects gain fields on synthetic OCT data when compared to running N3 on non-flattened data. It also reduces the overall variability of the intensities within each layer, without sacrificing contrast between layers, and improves the performance of registration between OCT images
    corecore