We present results from fully nonlinear simulations of unequal mass binary
black holes plunging from close separations well inside the innermost stable
circular orbit with mass ratios q = M_1/M_2 = {1,0.85,0.78,0.55,0.32}, or
equivalently, with reduced mass parameters η=M1M2/(M1+M2)2=0.25,0.248,0.246,0.229,0.183. For each case, the initial binary orbital
parameters are chosen from the Cook-Baumgarte equal-mass ISCO configuration. We
show waveforms of the dominant l=2,3 modes and compute estimates of energy and
angular momentum radiated. For the plunges from the close separations
considered, we measure kick velocities from gravitational radiation recoil in
the range 25-82 km/s. Due to the initial close separations our kick velocity
estimates should be understood as a lower bound. The close configurations
considered are also likely to contain significant eccentricities influencing
the recoil velocity.Comment: 12 pages, 5 figures, to appear in "New Frontiers" special issue of
CQ