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Abstract

Images of the retina acquired using optical coherence tomography (OCT) often
suffer from intensity inhomogeneity problems that degrade both the quality of the
images and the performance of automated algorithms utilized to measure structural
changes. This intensity variation has many causes, including off-axis acquisition,
signal attenuation, multi-frame averaging, and vignetting, making it difficult to correct
the data in a fundamental way. This paper presents a method for inhomogeneity
correction by acting to reduce the variability of intensities within each layer. In
particular, the N3 algorithm, which is popular in neuroimage analysis, is adapted
to work for OCT data. N3 works by sharpening the intensity histogram, which
reduces the variation of intensities within different classes. To apply it here, the data
are first converted to a standardized space called macular flat space (MFS). MFS
allows the intensities within each layer to be more easily normalized by removing
the natural curvature of the retina. N3 is then run on the MFS data using a modified
smoothing model, which improves the efficiency of the original algorithm. We show
that our method more accurately corrects gain fields on synthetic OCT data when
compared to running N3 on non-flattened data. It also reduces the overall variability
of the intensities within each layer, without sacrificing contrast between layers, and
improves the performance of registration between OCT images.

Keywords: Optical coherence tomography, retina, intensity inhomogeneity
correction, macular flatspace, registration.
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1. Introduction

Optical coherence tomography (OCT) is a widely used modality for imaging
the retina as it is non-invasive, non-ionizing, provides three-dimensional data, and
can be rapidly acquired (Hee et al., 1995). It uses near-infrared light to measure
the reflectivity of the retina, producing a clear image of the retinal structure and5

the cellular layers comprising it. OCT improves upon traditional 2D en-face plane
photography by providing depth information, which enables measurements of layer
thicknesses that are known to change with certain diseases (Medeiros et al., 2009;
Saidha et al., 2011).

Since the analysis of retinal OCT data—measuring layer thicknesses, for example—10

is a time consuming task when done manually, automated methods are critical for
examining populations of patients in large-scale studies. This analysis often relies
on image processing to extract information from the images, like layer boundaries
and fluid regions, in order to make the measurements of interest. In recent years,
many automated methods have been developed for the segmentation of the retinal15

layers (Garvin et al., 2009; Chiu et al., 2010; Vermeer et al., 2011; Lang et al., 2013,
2015a, 2017) and fluid-filled regions (Wilkins et al., 2012; Chen et al., 2012; Swingle
et al., 2014, 2015; Lang et al., 2015b; Antony et al., 2016b). Image registration,
which has received much less attention, has been used to align scans from different
subjects (Chen et al., 2014), for longitudinal intra-subject registration (Niemeijer20

et al., 2012; Wu et al., 2014), and in applications of registration including voxel based
morphometry (Antony et al., 2016a).

Such automated algorithms rely on the consistency of intensities within images
and across subjects to perform optimally. Unfortunately, OCT images often have dif-
ferent intensity values between subjects and scanners. Though some segmentation25

methods (Novosel et al., 2017) have been designed specifically to only assume that
layers are locally homogeneous. Figure 1 shows an example of intensity differences
between images acquired on the same patient on different scanners. In general,
differences in intensity are attributed to differences in scanner settings and protocols,
in the opacity of the ocular media, and possibly in tissue properties like attenuation,30

which can change due to disease (Vermeer et al., 2012; Varga et al., 2015)
OCT images also suffer from intensity inhomogeneity problems, leading to va-

riability within a single scan of the same subject. Intensity inhomogeneity occurs
for a variety of reasons: off-axis acquisition resulting in signal loss (Arevalo, 2009),
tissue attenuation (Vermeer et al., 2014), orientation of the cellular structure (Lujan35

et al., 2011), vignetting due to the iris (Drexler and Fujimoto, 2008), material inhomo-
geneity in the eye’s lens, cornea, and vitreous fluid (Arevalo, 2009), misalignment
when averaging multiple images to improve image quality, and even dirt on the
scanner eyepiece. Since the sources of intensity inhomogeneity are not necessa-
rily consistent with each other, a systematic approach to correcting for it is not as40

straightforward as in magnetic resonance imaging (MRI), where the inhomogeneity
is well understood (Sled et al., 1998). Basic methods for correcting OCT data from
well-characterized physical sources like attenuation (Vermeer et al., 2014; Girard

2
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Figure 1: B-scan images acquired on the same subject of (approximately) the same location on two
different scanners demonstrating the variability in the intensity profile. The images were acquired on
(top) a Heidelberg Spectralis scanner and (bottom) a Zeiss Cirrus scanner.

et al., 2011) may not correct for other sources of inhomogeneity. We note that
the models used within attenuation coefficient correction approaches (Girard et al.,45

2011; Vermeer et al., 2014) represent the inhomogeneity as a multiplicative gain
field model. Such a model has been explored in depth within the neuroimaging
community, with examples including N3 (Sled et al., 1998), N4 (Tustison et al., 2010),
and others (Roy et al., 2011).

Correction of intensity inhomogeneities in OCT images is expected to be benefi-50

cial for automated algorithms such as image segmentation and registration, which
typically depend on consistent intensities for optimal performance. Since intensity
variations may well be indicative of pathology, the use of inhomogeneity correction
for diagnostic purposes may be ill-advised. Therefore, we specifically seek a cor-
rection method that will work well as a preprocessing approach in automated OCT55

image analysis.
A few methods have been developed to correct inhomogeneity in retinal OCT

data. In (Kraus et al., 2014), the projected intensity pattern in the en-face plane
was used for illumination correction of the data; however, the correction did not
vary with depth. Novosel et al. (Novosel et al., 2015) use the attenuation correction60

method in (Vermeer et al., 2014) as a pre-processing step prior to running their layer
segmentation method. The N4 algorithm (Tustison et al., 2010), originally developed
for MRI data, was used by Kaba et al. (2015), but it was not able to remove all
inhomogeneity as shown in their presented figures.

A common method to normalize the intensity range of OCT data is to rescale65

the intensity values, either across the volume or in individual B-scans, to a fixed
range (Ishikawa et al., 2005; Ghorbel et al., 2011; Wilkins et al., 2012; Lang et al.,

3

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



2013). These methods do not use the intensity range of specific layers when
normalizing the data and thus inconsistencies still arise. In contrast, the work
of Chen et al. (2015) used histogram matching to normalize the intensities of70

different scans, and showed improved stability of layer segmentation across a
range of images with different quality. However, matching histograms may not be
robust, especially in the presence of inhomogeneity, which will blur the peaks of the
histograms.

In this paper, we propose a method for both inhomogeneity correction and75

normalization of macular OCT data that we call N3 for OCT (N3O). At the core of our
method is the N3 algorithm, which was developed for inhomogeneity correction of
brain MR data (Sled et al., 1998) and has been shown to be competitive with other
state-of-the-art algorithms (Arnold et al., 2001; Hou, 2006). Since direct application
of N3 does not produce satisfactory results on OCT data, we adapted the method,80

making several changes to improve both performance and efficiency. Some of this
work was previously presented as a conference paper (Lang et al., 2016). In this
paper, we have added several improvements to the method, significantly expanded
the algorithmic details, and provided a more extensive validation, which includes the
use of synthetic data and analysis of the effects of correction on image registration.85

2. Methods

2.1. Overview

A goal of this work is to correct macular OCT data so that the pixel intensities
of a layer at any region within that layer should be similar—that is have a small
standard deviation relative to the standard deviation of intensities within the whole90

image—moreover they should be consistent with scans from other subjects. This
would give us a subject independent standardized intensity scale for macular OCT
data, which would be beneficial in creating normalized population atlases. In other
words, the intensity values of a layer at one region of a volume should have similar
values to those in another region of the same volume, as well as to scans from95

another subject. Our approach proceeds in three steps. First, we convert each
B-scan into a computational domain that we denote macular flatspace (MFS)—in this
domain, the second step of inhomogeneity correction is improved. This correction
step estimates and then removes a smoothly varying gain field. Finally, the data
is normalized so that the intensity values of the corrected data lie in a predefined100

range consistent across subjects.

2.2. Macular Flatspace

We transform an OCT image into MFS to create an image in which all of the
layers appear flat; see Fig. 2 for an example. In the converted image, thin layers are
stretched and thicker layers are compressed to achieve the goal of the layers being105

approximately flat. The transformation itself is applied only in the A-scan direction
(vertically), and can therefore be thought of as applying a 1D deformation to each
A-scan. However, knowledge of the 3D spatial position of the A-scans is necessary
to determine which 1D transformation to apply.

4
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Figure 2: A B-scan image in (top) native space and (bottom) MFS.

MFS acts as a standardized computational space allowing for consistent pro-110

cessing across subjects. It also removes the curvature of the retina—which can
vary significantly across acquisitions—allowing for different regions of the volume to
be treated in the same manner. We also note that the coordinate system in MFS
becomes meaningful relative to the “coordinate system” of the retina; traversing
the x and y axes in MFS corresponds to movement within and between layers,115

respectively. As a result, operations like smoothing can be easily adapted to restrict
smoothing to within or between certain layers.

Previously, the MFS transformation of OCT data has been used for layer seg-
mentation where the conversion allowed for simplified constraints on the shape of
the retina (Lang et al., 2014; Carass et al., 2014). Three distinct changes have been120

made to the MFS we use in this work: 1) a quadratic regression model replaces a
linear model to better fit the retinal shape; 2) added regularization is used to enforce
spatial smoothness; 3) cubic interpolation of the transformation is used to reduce
artifacts.

In order to transform the image to MFS, where the layers appear flat, we require125

an estimate of the boundary positions. In the case that a set of layer boundaries
are available, perhaps as output by a layer segmentation algorithm, then these seg-
mentation boundaries can be used directly to transform the data to MFS. However,
N3O is intended to be used as a pre-processing step for such algorithms, and we
therefore do not assume that a layer segmentation is available. Instead, we estimate130

each layer’s position based only on the positions of the top and bottom retinal boun-
daries, the inner limiting membrane (ILM) and Bruch’s membrane (BrM), respectively,
which can be done very quickly and accurately due to their large gradient response.1

These two boundaries are then used to predict where the interior boundaries will

1To estimate the ILM and BrM, we use a previously described method (Lang et al., 2013) where, in
brief, the boundaries are found by looking for the largest positive and negative gradients in each column
of the data with some added outlier removal and smoothing.

5
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be. For this prediction, we use separate regression models to find each boundary135

within each column, or A-scan, of an image. Figure 3 shows an example image with
estimated boundaries as dashed green lines, which are computed based only on
the solid red outer retina boundaries. Given the boundary positions, we construct a
transformation going from the regression boundaries to a flattened position defined
by the average position of each boundary in the native space. Definitions of the140

various layers can be seen in Lang et al. (2013) Fig. 1.

Figure 3: A B-scan image in native space and MFS with retinal boundaries overlaid as solid lines in red
and regression estimated boundaries overlaid as dashed lines in green.

2.2.1. Boundary estimation
We estimate the boundary positions within an A-scan assuming that the thickness,

ti(x), of layer i (i ∈ {1, . . . , 8}) can be predicted given the total retina thickness,
t(x) = b2(x) − b1(x), where b1 and b2 are the initial estimates of the ILM and BrM145

boundaries, respectively, and x indexes the A-scans. Specifically, we use a quadratic
model expressed as

ti(x) = αi,1(x) + αi,2(x)t(x) + αi,3(x)t2(x) (1)

where αi, j are the regression coefficients. A similar regression model estimates
t0(x), the distance from b1(x) to the true ILM boundary, correcting for any bias in the150

b1 estimate compared to ground truth data. Given an input set of retina boundaries
and the result of each regression, the estimated boundary positions are given as

r j(x) = b1(x) +

j−1∑
i=0

ti(x) (2)

where j ∈ {1, . . . , 9} indicate the boundaries in order from the ILM to the BrM.
The regression model in (1) is trained using data from manually segmented155

macular OCT scans. Since this model is spatially varying over A-scans, we first
align each scan to the fovea, providing a central reference point. Since the scans

6
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were acquired having a consistent orientation, no further alignment was done aside
from flipping right eyes to appear as left eyes. Any remaining variability is expected
to be captured by the regression.160

Given T manually segmented volumes, each having a fixed size of L × M × N
voxels2, there are MN A-scans and 3MN coefficients to estimate for the quadratic
regression of a single layer. We solve for the coefficients using a regularized least
squares system of equations formulated as

arg min
αi

‖Aαi − ti‖
2 + λ ‖Γαi‖

2 (3)165

where ti is a T MN × 1 vector of layer thicknesses derived from the manually de-
lineated boundary points, A is a 3MN × T MN block diagonal matrix of the form

A =


V1 0

. . .

0 VMN

 (4)

with Vandermonde matrices Vk on the diagonal with the form170

Vk =


1 t1k t2

1k
...

...
...

1 tTk t2
Tk

 (5)

where each row uses thickness values from a different training subject. The regu-
larization matrix Γ penalizes differences in the coefficients of neighboring A-scans
(i.e. the first order difference in the two orthogonal directions of the data). This
problem can be solved efficiently as a sparse system of equations using the QR175

decomposition (e.g. as implemented using the mldivide function in MATLAB).

2.2.2. MFS Transformation
Given an A-scan, the transformation from native space to MFS is constructed

by mapping the regression boundaries so that they are flat. Specifically, given a
set of points in native space {ri, i = 1, . . . , 9} and corresponding points in flat space180

{ fi, i = 1, . . . , 9}, we need to find a smoothly varying and monotone transformation
r = T ( f ) such that ri = T ( fi) for all i.3 The monotone requirement preserves layer
ordering and prevents folding in the transformation. Since a piecewise cubic Hermite
interpolating spline (Fritsch and Carlson, 1980) fits these requirements, we use this
method for interpolating the transformation between boundaries. (For further details185

see the MATLAB function pchip.) In previous work, this transformation was defined

2All of our training data had the same size. For testing data acquired with a different number of A- or
B-scans, we can resize the coefficient maps accordingly.

3We define the transformation from MFS to native space since the mapping of the volume into MFS
uses a pull-back transformation at each pixel defined in the opposite direction. However, since the
mapping is invertible due to its monotonicity, we can compute the transformation in both directions.

7
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using linear interpolation (Lang et al., 2014; Carass et al., 2014), which can produce
discontinuity artifacts at boundaries.

For the values of fi, we use the average value of ri over all A-scans (i.e. the
native space boundaries are mapped to their average position), as such layers190

maintain their proportional thickness between native space and MFS (that is thin
layers in native space are thin in MFS). Since the interpolation of the data into MFS
is done on a regular lattice grid, we need to define the size of the interpolated MFS
result. The width of the data is unchanged so we only need to choose the number of
rows. Specifically, we do this by setting the pixel size in MFS such that the average195

height of each pixel in a layer is equal to 4 µm, which is close to the digital resolution
of the data. Note that the true physical pixel size at every location varies laterally
depending on the amount of compression or stretching in each A-scan. Padding
is also added to the ILM and BrM at a fixed distance of 60 µm. The resulting MFS
data has approximately 130 pixels per A-scan, depending on the subject.200

2.3. N3 Inhomogeneity Correction

We briefly describe the details of N3 Sled et al. (1998) here, before detailing our
modification for OCT data. The inhomogeneity model is assumed to be multiplicative
with the intensity of an image v at position x given by v(x) = u(x)b(x) + n(x), where
u is the corrected/underlying image, b is a smoothly varying gain field, and n is205

normally distributed noise. By taking a logarithm of the data, an additive model
is created, leading to the model log v(x) = v̂(x) = û(x) + b̂(x). The additive field b̂
is assumed to be smoothly varying following a zero-mean Gaussian distribution.
Note that the noise term is assumed to be zero in this transformed model, as
detailed in the original work Sled et al. (1998). The derivation of the N3 algorithm210

operates under this assumption, despite it being incorrect. To partially counteract
this problem, an iterative correction strategy is used by N3, incrementally estimating
the inhomogeneity field. In practice, the method was found to work well on real data
with varying levels of noise, and therefore it can be assumed that the noise-free
assumption and iterative refinement strategy are appropriate.215

The algorithm iterates over three steps of estimating û from v̂ given b̂ in the previ-
ous iteration, sharpening the distribution of û using the assumed normal distribution
of b̂, and smoothing the resulting estimate of b̂ from the sharpened û by fitting a
cubic B-spline surface to the data. Iterations continue until either the field estimate
converges to within a given threshold or the number of iterations reaches a specified220

limit.
To adapt N3 to work for OCT data, we incorporate three significant modifications

to the original algorithm. First, instead of initializing the gain field to unity as in Sled
et al. (1998), we use the value of the image divided by an average MFS image as
the initialization, which improves the convergence of the algorithm. Second, while225

we maintain the smoothing step of the original algorithm at every iteration, we use
a slightly different and more efficient B-spline smoothing model. This new model
produces similar results to the original method at a fraction of the computational cost.
Finally, we run N3 independently on every 2D image in a 3D volume as opposed to
running it fully in 3D was as done in the original work. In practice, we have found230

8
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Figure 4: The data (a) in MFS is divided by (b) the template image to generate (c) the initial gain field.

that intensity inhomogeneity in OCT data can vary a lot between images due to
serial acquisition of the data and a full 3D model does not work as well.

2.3.1. Initialization
By averaging over all A-scans in an MFS-converted OCT volume, we create an

average A-scan profile that is then replicated back to the size of the original data to235

produce a template MFS image. This template image serves as a guide to what the
original data should look like without any inhomogeneity. We can then compute an
initial estimate of the gain field by dividing the input image by the template image.
An example of these three images is shown in Fig. 4. This initialization has artifacts
since the boundaries in the initialization are not perfectly flat. However, the iterative240

refinements of the algorithm allow for convergence to an accurate estimate of the
true gain field, which produces corrected intensities similar to those of the template
image.

2.3.2. B-spline smoothing model
In N3, the estimated gain field is smoothed by fitting a tensor cubic B-spline245

surface to the data. In two dimensions, this B-spline function is written as

µ(x, y) =
∑

i

∑
j

αi jBi(x)B j(y) (6)

where Bi(x) is a 1D B-spline along the x dimension, centered at control point i, with
a similar definition for B j(y), and αi j are weights of the 2D tensor B-spline function
centered at the control point indexed by i and j. Control points are equally spaced250

over the data with the spacing between points in each of the two directions given

9
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as algorithm parameters. Smoothness of the fit is enforced both by increasing the
distance between the control points, and by adding a regularization term to the least
squares fitting problem.

The B-spline model is fit to the data by solving for the B-spline coefficients that255

minimize an energy function as

arg min
α

E(α) + βR(α) (7)

where E(α) measures the average squared error of the B-spline fit, R(α) measures
the roughness of the fit, and β is a balance parameter. In Sled et al. (1998) the data
term was defined as260

E(α) =
1
N

N∑
n=1

(In − µ(xn))2 (8)

where In is the measurement of the intensity at coordinate xn = (xn, yn), and the
roughness term is defined by the thin plate bending energy as

R(α) =
1
A

∫
C

2∑
i=1

2∑
j=1

(
∂2µ (x)
∂xi∂x j

)2

dx (9)

where the integral is over the region C containing the data, which has area A Sled265

et al. (1998), and N is the number of pixels in the image.
We use the same form of the data energy E(α), but a different form for R(α),

following the work of Eilers et al. (2006). Specifically, instead of minimizing the
energy over the entire B-spline surface µ, we minimize over only the B-spline
coefficients α. The regularization term used for this problem has the form (using the270

notation of the original paper)

R(α) =
∑

i

‖αi•D2‖
2 +

∑
j

‖D2α• j‖
2 (10)

where D2 is a second order difference matrix and αi• is a row vector containing
values of αi j over all j, with a similar definition for α• j as a column vector. Assuming
that the number of control points is much smaller than the number of pixels in275

the image, this form of regularization constructs a far smaller matrix allowing the
problem to be solved in an efficient way Eilers et al. (2006). While this model
produces slightly different results than the original N3 one, we have empirically
found that a similar result can be produced by tuning the regularization parameter β.
When tuned to provide similar results using the same control point grid, the fit using280

the new model is about 150 times faster than running the fit using the old model
(0.05 vs. 0.8 seconds per B-scan). 4

4Run times come from comparing our implementation of N3 incorporating Eilers et al. (2006) in
MATLAB with the implementation of Sled et al. (1998) available at https://github.com/BIC-MNI/N3.

10
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2.4. Intensity Normalization

Since N3 only acts to sharpen the peaks of a histogram, the intensity ranges
of corrected images are not necessarily consistent across scans. As we do not285

assume any knowledge of the segmentation of the layers, other than the retinal
boundaries used in our MFS step, we cannot simply scale the intensity values within
each layer to a predefined value. Instead, we scale the intensities based on the
peak values found in the histograms of the vitreous region above the ILM and in the
layer found above the BrM, known as the retinal pigment epithelium (RPE).290

Since the peak value in the vitreous histogram is consistent and easy to find,
we use the maximum value in the histogram directly for scaling; let this value be
I1. While the RPE generally contains bright intensities, there are often two peaks
in its histogram since darker intensity values also appear due to its proximity to
the choroid, the appearance of blood vessel shadows, and the dark bands of the295

photoreceptor layers. For clarity, we define the choroid region to be everything within
40 µm of the BrM boundary. As a result, using the peak value of the histogram may
produce a value not representative of the RPE band. We counteract this possibility
in three ways: 1) Restrict the region we compute the histogram over to be from the
BrM to 25 µm above it, which may not fully encompass the RPE layer; 2) Compute300

the histogram using a kernel density estimate in which the kernel is Gaussian with a
relatively wide bandwidth of 0.05; 3) Find all peaks in the histogram and choose the
one centered at the largest value, which we denote as I2. We normalize the data
by contrast stretching, mapping values in the range [I1, I2] to the range [0.1, 0.65].
These values are arbitrary, however they produce images with an intensity range305

that is consistent with those in the native data.

3. Experiments

To evaluate the performance of our algorithm, N3O, we constructed three se-
parate experiments. 1) We created synthetic OCT data free of any inhomogeneity
and looked at the accuracy of using N3O to recover randomized gain fields having310

different characteristics, which are added to the data. 2) We looked at the variability
of the intensities within each layer before and after running N3O to explore how
the stability and consistency of the intensities changes in real data. 3) We ran an
intensity based registration algorithm (Chen et al., 2013, 2014) on N3O proces-
sed data to show the improvement in performance offered by N3O. The first two315

experiments provide quantitative measures to show not only that N3O accurately
corrects inhomogeneity, but that it does so more accurately than other methods. The
third experiment provides a practical application of using N3O as a pre-processing
step for an automated image analysis algorithm, in which we again compare its
performance against other methods.320

3.1. OCT Data

The data used in our experiments were acquired using either a Zeiss Cirrus
scanner (Carl Zeiss Meditec, Dublin, CA, USA) or a Heidelberg Spectralis scanner
(Heidelberg Engineering, Heidelberg, Germany). All images from the respective
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scanner were scanned using the same protocol. Both Cirrus and Spectralis data325

cover a 6 × 6 mm area of the macula centered at the fovea, with the Cirrus imaging
to a depth of 2 mm and the Spectralis to a depth of 1.9 mm. B-scan images have a
size of 1024 × 512 pixels for the Cirrus data with 128 equally spaced B-scans per
volume. The Spectralis images have a size of 496 × 1024 pixels with 49 equally
spaced B-scans per volume. The Spectralis scanner also used the automatic real-330

time (ART) setting where a minimum of 12 B-scan images of the same location were
averaged to reduce noise. We also use default parameters within the scanner for
selecting the focal plane, beam shape and signal roll-off.

3.2. Algorithm details

Training for the MFS was done using manually segmented Spectralis data from335

41 subjects. Each boundary has one pixel per A-scan and therefore has 496 × 49
points over the volume. Rather than modifying the regularization in (3) to account for
the anisotropy of the data, we resized the boundary maps to have a size of 224×224
pixels (224 =

√
1024 · 49) before computing the regression. We set λ = 4 in (3),

based on a ten fold cross validation by minimizing the average standard deviation of340

the fitting error in the subjects left out of a fold.
We used default parameters from the original N3 algorithm for the number of

iterations (50) and the convergence threshold (0.001) and used a FWHM of 0.1 for
the Gaussian distribution used for sharpening. Downsample factors of 2 were used
for each dimension in Cirrus B-scans and a factor of 4 horizontally in Spectralis345

B-scans (no vertical downsampling). For the experiment of running N3 on native
space data, the region of the retina between the estimated ILM and BrM boundaries
was used as a mask for running the algorithm.

Finally, the values of the B-spline control point spacing in the x and y directions
and the regularization parameter β in (7) were chosen by tuning the parameters350

over a range of values and choosing those with the best performance. Evaluation
was done on an independent set of simulated OCT data, generated as described for
experiments in Section 3.3. This set consisted of six synthetic OCT volumes (three
Spectralis and three Cirrus), with five gain fields randomly generated using each of
the four models described in Sec. 3.3.2 added to each volume. Thus, for a given set355

of parameters, the mean squared error between the true and estimated gain fields
were averaged over all 120 data sets. The results of fixing the control point spacing
to 80 µm in each direction and searching over different values of β, as well as fixing
β = 104 and searching over the 2D space of control point values is show in Fig. 5.
The values that worked best for both N3 and N3O were control point spacing in both360

directions of 80 µm and β = 104.

3.3. Gain Field Recovery from Synthetic Data

For the first experiment, we created several sets of synthetic OCT data free
of inhomogeneity and therefore useful for estimating the performance of N3O by
applying artificially generated gain fields and comparing the recovered field to the365

true field. The artificial gain fields were generated randomly by following one of two
different inhomogeneity models, one having decreased intensities near the edges of
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Figure 5: Plots of the mean squared error (MSE) of the gain fields recovered using N3 and N3O while
(a) varying β and fixing the control point spacing, and (b) varying the control point spacing in the x and y
directions while fixing β.

(a) Synthetic Spectralis Image (b) Real Spectralis Image

(c) Synthetic Cirrus Image (d) Real Cirrus Image

Figure 6: Examples of synthetic OCT data generated from real scans acquired by the (a) Spectralis and
(c) Cirrus scanners next to their corresponding real images (b, d).

the data field-of-view, simulating effects of curvature and vignetting, and one having
decreased intensities over different regions of the data, with the size and number of
regions varying randomly. In addition to these two global inhomogeneity models, we370
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included an additional inhomogeneity field independently to each B-scan to simulate
effects due to scan averaging, raster-scan acquisition, and eye movement.

3.3.1. Synthetic Data
To create synthetic OCT data, we followed a similar process to how the template

images were created for the N3 initialization step, as described in Sec. 2.3. Specifi-375

cally, an input volume was converted to MFS where all of the A-scans were then
averaged to create a 1D template A-scan. This template was then replicated back to
the size of the original volume and transformed back to native space so as to match
the shape of the ILM and BrM boundaries in the original image.

Noise was added to each image according to the OCT speckle model described380

by Serranho et al. (2011). Details of the algorithm are left to the referred paper. The
algorithm has several parameters, and we used a different set for each scanner’s
data. For the Cirrus data, we used the same parameters described in the paper but
amplified the scale of the additive noise by 25%. For the Spectralis data, we changed
algorithm parameters β1 = 0.1 and β3 = 0.6. We also decreased the amplitude385

of the additive noise by 50% and smoothed the final noise field with an isotropic
Gaussian kernel (σ = 2.5 µm). These changes are heuristic in nature, designed
only to produce visually similar images to those we acquire on living persons.

Example synthetic B-scans from both scanners are shown in Fig. 6. We note
that blood vessels are removed by this process. Blood vessels could be added back390

into the data, however we did not do this so as to assess the performance purely
based on layer intensities.

3.3.2. Artificial Gain Fields
The gain fields are randomly generated as 2D patterns on the top-down en-face

plane of the data. The pattern is then projected down through the data such that395

either the gain has the same value throughout the entire A-scan, or it has the same
value only within the RPE region. When restricted to the RPE region, we also
smooth the resulting gain field so that it is not discontinuous at the boundaries. An
example of this process is shown in Fig. 7 where we show the gain field pattern in
2D and then projected through the volume.400

Two different types of randomized gain fields, which we will denote as Type
1 and Type 2, were added to the synthetic data. While these two types of fields
are modeled after realistic patterns found in OCT data, such as those that may be
found as a result of retinal pathology, however, they are exaggerated to be relatively
extreme cases. The Type 1 pattern reduces the intensities around the edge of405

the field-of-view of the data. Specifically, the multiplicative gain field has a unity
value within a circle of radius 3

√
2 mm (thus, the circle can circumscribe the square

3×3 mm area of the data). The center of this circle is then randomly placed between
2 and 3 mm of the center of the scan. The gain field decays in a Gaussian shape
outwardly from the edge of the circle with a variance such that the smallest value410

over the entire image is scaled equal to 0.2.
The Type 2 gain field pattern includes random areas of decreasing intensity

simulating local areas of inhomogeneity, which commonly arise in the data. Speci-
fically, we randomly include between 1 and 4 spots, centered randomly within the
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central 5 mm area of the data. The spots are modeled as anisotropic Gaussian415

functions with a randomly chosen standard deviation value between 0.25 and 2 in
each direction, as well as being oriented in a random direction, and having a peak
magnitude between 0.2 and 0.5.

Finally, to model inhomogeneity patterns that differ between B-scans, we linearly
vary fields across each B-scan. Specifically, the gain values on the left and right420

edge of each image are chosen randomly from a normal distribution with a mean
value of 1 and a standard deviation of 0.02 for 85% of the images, and with a
standard deviation of 0.2 for 15% of the images. Thus, the added inhomogeneity
pattern is smaller for most of the data, which is an effect commonly seen in data
acquired from the Spectralis scanner.425
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Figure 7: En-face plane views of an example (a) Type 1 and (b) Type 2 gain field patterns, each having
added variation within each B-scan. In (c) and (d), we show the gain field at the location pointed by the
arrow in (b) projected through the volume to cover the whole retina or only the RPE region, respectively.
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3.3.3. Experiments
We generated ten synthetic OCT scans of healthy controls, with five coming

from each of the Spectralis and Cirrus scanners. For each synthetic scan, we
randomly generated ten inhomogeneity fields using each of the two models. We
further restricted each of the fields to be applied either to the entire retina or to only430

the RPE region. Restricting only to the RPE mimics changes in the intensity of
only a single layer or region, which is similar to attenuation differences over varying
thicknesses. Thus, a total of 400 synthetic data sets were created. Note that noise
was added to the synthetic images after applying the respective gain field.5

To evaluate the algorithm performance, we compute the average RMS error435

across all scans as

RMS =

√
1
n

∑
i∈M

(
bgt,i − ωbest,i

)2
(11)

where the summation is over the n pixels in the retina masked region M, bgt,i and
best,i are the ground truth and estimated gain fields, respectively, indexed by pixel i,
and ω is a normalization factor accounting for a scale difference between the two440

fields. The value of ω is computed in closed form by minimizing the sum-of-squared-
differences Chua et al. (2009). Finally, we evaluate the performance using the
simulated data after running N3O versus running N3 on the native space data with
initialization using a unity gain field and the modified smoothing model described in
Section 2.3 (thus we do not compare against the original N3 algorithm, but a version445

modified to work on OCT data).

3.4. Consistency and Contrast of Layer Intensities

For the second experiment, we measure the variability of intensities within each
layer before and after running N3O. While not a direct measure of inhomogeneity
correction, measuring this variability provides a surrogate measure of algorithm450

performance since a stated goal was to increase the consistency of intensities within
each layer.

To measure the intensity variability, we computed the coefficient of variation
(CV) of the intensity values within each layer, with lower CV values indicating better
performance (more stability). CV measures the ratio of the standard deviation to455

the mean value and is independent of the absolute scaling of the estimated gain
field and thus is directly comparable between algorithms and data sets. Layers were
defined based on the results of using a validated automated segmentation algorithm
on the data (Lang et al., 2013). To reduce the effect of boundary errors, the resulting
segmentation labels for each layer were eroded by one pixel. Using this type of460

conservative segmentation has also been shown to be more correlated with the
accuracy of estimated gain fields in MR data (Chua et al., 2009).

An image having a uniform intensity everywhere would be best according to CV,
so we therefore also look at the contrast between adjacent layers to show that we

5While speckle can be viewed as a tissue property affected by inhomogeneity, the noise in real images
appears amplified after inhomogeneity correction, and thus, this model may be appropriate
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maintain the differences between layer intensities after running N3O. The contrast465

between adjacent layers i and j is defined as Ci j =
∣∣∣(Īi − Ī j)

∣∣∣ / ∣∣∣(Īi + Ī j)
∣∣∣ where Īi

denotes the average intensity within layer i. Larger values of Ci j indicate increased
levels of contrast. Since contrast is not invariant to linear transformations of the
intensity, we rescaled the intensity range within each image so that the vitreous
region has a value of 0.2 and the RPE region has a value of 0.65. We did not use470

histograms for normalization as in Sec. 2.4, since the histogram is less reliable in
the presence of inhomogeneity.

In our experiments, we analyzed 80 scans from each of the Spectralis and
Cirrus scanners—160 subjects in total. The 80 scans consisted of 40 healthy control
subjects and 40 multiple sclerosis (MS) subjects. While there was some overlap in475

subjects scanned on both scanners, many were separate. We compared the results
using N3O with those on the original data, using only the intensity normalization
strategy described in Section 2.4, and an attenuation correction method (Girard
et al., 2011). While the work of Girard et al. (2011) does not explicitly correct for
inhomogeneity, it does aim to standardize the intensities across scans by estimating480

the attenuation coefficient of each pixel as part of a multiplicative model.

3.5. Registration and Segmentation

As a final experiment, we assess the performance of segmenting OCT data by
label transfer using image registration. Label transfer segmentation, sometimes
called atlas-based segmentation, produces a segmentation of an unlabeled image485

by registration to an image that has a manual segmentation. After registration,
the segmentation of the labeled data is transferred through the registration to the
unlabeled subject. Note that this type of segmentation methodology is applicable to
volumetric, intensity-based registration methods rather than surface-based methods,
which requires a segmentation as a part of the registration process.490

Looking at retinal OCT data, atlas-based segmentation has only recently began
to be used for finding the retinal layers (Zheng et al., 2013; Chen et al., 2013, 2014),
showing inferior accuracy to current state-of-the-art segmentation methods. Despite
its inaccuracies image registration enables a full volumetric analysis that is not
accessible using other segmentation methods. Specifically, through registration495

to a normalized space, like an average atlas, spatial differences within layers can
be extracted and compared across populations of subjects. Such an analysis is
sometimes called voxel based morphometry (VBM). Recently, Antony et al. (2016a)
used VBM to show localized statistically significant differences between populations
of healthy controls and patients with multiple sclerosis. Considering its success and500

popularity in other imaging modalities like CT and MRI Isgum et al. (2009); Cabezas
et al. (2011), registration will likely become a more common technique for analyzing
retinal OCT data in the future.

To look at the effect of N3O on registration, we use a deformable registration
method developed by Chen et al. (2013, 2014), which, after an affine alignment step505

to align the outer retinal boundaries, uses one-dimensional radial basis functions
to model deformations along each A-scan. Since a full registration is carried out
separately on each A-scan, a regularization term is used to ensure that the resulting
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Table 1: Mean RMS error in the recovered gain field. Results for each field type and method are averaged
over 100 trials. All results show significant improvement using N3O over N3 (p < 10−10 using a paired
two-tailed t-test).

Whole Scan RPE

Type 1 Type 2 Type 1 Type 2 Mean

Spectralis

N3 0.095 0.076 0.047 0.049 0.067

N3O 0.015 0.014 0.036 0.042 0.027

Cirrus

N3 0.094 0.078 0.046 0.048 0.067

N3O 0.010 0.009 0.030 0.039 0.022

deformations are smoothly varying between A-scans. Further details of the full
registration algorithm can be found in Chen et al. (2013, 2014).510

One additional change was made to the presented method where we included an
additional regularization term to the energy minimization problem to add smoothness
of the deformation within each A-scan. Specifically, given the deformation field dm(x)
of an A-scan indexed by m, we encourage the smoothness of the deformation by
penalizing the gradient magnitude ‖∇dm(x)‖2. While the registration was shown515

to work well using the original formulation, this added term helps to improve the
registration in areas where the intensity is uniform (e.g. within the layers).

To evaluate the results of the label transfer segmentation on the OCT data, we
registered a set of 5 randomly chosen subjects to each of a separate set of 10
subjects, with the subjects chosen from the same cohort of data used in Sec. 3.4.520

Since the registration algorithm has not yet been validated using Cirrus data, this
experiment was restricted to only Spectralis data. Evaluation was done by looking at
the average unsigned boundary error between the registered data and the ground
truth segmentations produced over all 50 registrations.

4. Results525

In Table 1, we show the results of running N3 and N3O on the synthetic OCT data.
We see that N3O performs better than N3 in every case with statistical significance
shown for every comparison (p < 10−10 using paired two-tailed t-tests). Looking
within specific experiments, recovery of the whole scan field had a smaller error than
recovery of the field restricted to the RPE for N3O. This is because the restricted530

RPE field had an abrupt change in the gain field which could not be recovered
as accurately due to the gain field smoothing step of N3. We also see similar
performance for recovery of the second type of gain field as compared to the first
type. While the second type appeared to be locally more difficult where the gain
field changes in smaller regions, looking globally averaged away these differences.535
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We observe from Table 1, that the gain field is more accurately recovered on
synthetic Cirrus data as opposed to Spectralis data. This, on the surface, is counter-
intuitive as Cirrus data is noisier than Spectralis data. We believe that this result is
due to the Spectralis and Cirrus data having different histogram profiles as well as
different contrast between each of the layers. Since N3 acts on the histogram of the540

data, differences between the histograms from these two scanners produce different
results. When the Spectralis noise model was applied to simulated Cirrus data, and
vice versa, we see the expected result with the smaller Spectralis noise performing
better than with the Cirrus noise.

Figure 8(a) shows the result of computing both the CV and the contrast of545

the layer intensities on the original data and the data after intensity normalization,
after attenuation correction, and after running N3O. The presented results are only
shown for the Spectralis data on a restricted set of layers, with results for all of the
layers, and for the Cirrus data provided in the Supplementary Material. Overall,
we see that N3O has significantly better CV values than the first two methods for550

all layers (p < 10−9), and significantly better than the attenuation correction for all
layers except the RNFL, OPL, and ISOS layers (p < 10−6, see Supp. Fig. S1 for
ISOS result), where the attenuation correction was significantly better (p < 0.01).
The Cirrus data showed similar results, with added significance over attenuation
correction for all layers (p < 0.01). Interestingly, the normalization only result on the555

Cirrus had worse CV values than in the original data (see Supp. Fig. S1), which is
likely due to noise in the data affecting the histogram peak estimation. Since the
histogram peaks are sharpened after running N3, N3O did not have this problem.
Thus, intensity normalization by peak finding is not a recommended strategy for
uncorrected OCT data.560

Figure 8(b) also shows that the contrast of the data is not negatively affected
by running N3O. While some layers showed significant differences when compared
to the original data, the contrast values were consistent with each other to within a
median value of 0.011 for every layer. We also see that while attenuation correction
helps to remove inhomogeneity in the data by normalizing to attenuation values565

(thus improving the CV), some layers end up with less contrast, for instance, the
RPE to choroid interface.

In Fig. 9, we show an example result on a Spectralis and a Cirrus image. Shown
are the input images, the N3O result images, and the estimated gain fields. Note
that the result image is the input image divided by the gain field as a result of570

the multiplicative model used by both N3 and N3O. To emphasize the gain field
correction in the region where the data is converted to MFS, we have masked out
the background in the gain field images.

Finally, we show the results of the label transfer segmentation experiment in
Table 2. Here, we see that N3O improves the performance of image registration of575

OCT data on average when compared to using each of the other three methods,
with significantly better results for six of the nine boundaries at the p < 0.001
level. Similarly, we see that running N3 without conversion to flatspace is more
accurate than running intensity normalization alone, which is in turn better than no
normalization of the data at all.580

Figure 10 shows an enlarged portion of two sample registration results, displaying
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Table 2: Mean absolute errors (µm) in boundary positions between the ground truth segmentation
and the segmentation results after registration. Standard deviation across subjects are in parentheses.
Significance testing done using a paired two-tailed t-test.

ILM RNFL-GCL IPL-INL

Original 3.90 (±0.68) 9.84 (±2.83) 11.95 (±5.07)
Norm. 3.72 (±0.46) 9.09 (±2.52) 9.86 (±2.98)
N3 3.71 (±0.54) 8.29 (±2.56)∗† 7.77 (±3.02)∗†

N3O 3.65 (±0.51) 7.78 (±2.51)∗†‡ 7.22 (±3.30)∗†

INL-OPL OPL-ONL ELM

Original 10.77 (±4.49) 9.11 (±4.09) 5.86 (±1.47)
Norm. 8.58 (±2.02)∗ 7.18 (±1.62) 5.32 (±1.12)∗

N3 7.11 (±1.69)∗† 6.18 (±1.23)∗† 5.00 (±1.07)∗†

N3O 6.63 (±1.73)∗†‡ 6.00 (±1.21)∗† 4.84 (±1.00)∗†‡

IS-OS OS-RPE BrM

Original 4.29 (±1.43) 6.37 (±1.53) 4.94 (±2.04)
Norm. 3.87 (±1.34)∗ 6.24 (±1.59) 4.13 (±1.16)∗

N3 3.65 (±1.60)∗ 6.07 (±1.63)∗ 2.98 (±0.51)∗†

N3O 3.48 (±1.47)∗†‡ 5.91 (±1.53)∗†‡ 2.83 (±0.53)∗†‡

∗Significant at the p < 0.001 level compared to the Original.
†Significant at the p < 0.001 level compared to Norm.
‡Significant at the p < 0.001 level compared to N3.
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Figure 8: Box and whisker plots of (a) the coefficient of variation of the intensities within a select set of
layers and (b) the contrast between successive layers. For each box, the median value is indicated by
the central black line with the width of the boxes extending to the 25th and 75th percentiles, the whiskers
extending to 1.5 times the interquartile range, and single points representing outliers beyond the whiskers.

both the subject and target as well as the results of the registration using the original
intensity image and the N3O corrected image. We see that when the intensity values
between the moving and target images are close, the unprocessed result performs
as well as the N3O result, however, N3O performs much better when the moving585

and target images have different intensity ranges. Note that while N3O improves the
registration result, there is still room for improvement, as indicated by some of the
larger values in Table 2. This problem is mainly due to the variability inherent in the
registration. The algorithm parameters were not tuned to optimize the performance
of the segmentation, and better results would likely be possible if they were.590
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(a)

(b)

Figure 9: Example results from (a) a Spectralis scanner and (b) a Cirrus scanner. For each example, the
input image is shown on top, the N3O result in the middle, and the estimated gain field on the bottom.
Darker colors in the gain field images indicate smaller gain values.
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(a) 

(b) 

Moving Target Registered Registered w/N3O 

Figure 10: Cropped registration results of two separate examples are shown in (a) and (b). Shown are
the moving image, the target image, and the registration results both without intensity correction and after
running N3O on each image prior to registration. Overlaid segmentation boundaries are shown in the
second row of (a) and (b). Manual segmentations are shown for the moving and target images, while the
manual labels from the moving image are overlaid after registration on the respective registration images.

5. Discussion and Conclusion

We have proposed a method for inhomogeneity correction and intensity norma-
lization of macular OCT data. While the previously developed N3 method is used
for correction, it required adaptation for OCT by converting the data to a macular
flat space before running it. In addition to the use of MFS, we improved the perfor-595
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mance of N3 by modifying the model used to smooth the gain field at every iteration.
This modification produces similar results to the original algorithm with improved
efficiency.

The importance of converting the data to MFS before running N3 was shown in
our first and third experiments. Specifically, conversion to flatspace prior to running600

N3 produced more accurate recovery of gain fields and also enabled a more accurate
registration of intensity corrected data. We believe there are several reasons for
these results. First, MFS allows the estimated gain field to vary smoothly within
layers thereby improving the consistency of the resulting intensities in each layer.
Second, it also allows us to initialize the gain field in a meaningful way by creating a605

template image to estimate the initial field. By initializing the algorithm closer to the
solution, the N3 iterations are better able to converge to an accurate solution. Note
however that there is some robustness built into the original N3 algorithm, since it
was originally developed for brain MR data, which can have a lot of variability. This
was shown in Table 2 where the N3 result outperformed our previously developed610

intensity normalization method when looking at image registration.
Experiments showed that N3O can accurately recover gain fields applied to

synthetic data. While the process used to create the synthetic data did not follow
physical principles of how OCT is generated, realistic images were created with the
performance of the algorithm further validated by looking at the intensity consistency615

as well as the results of registration. Since simulation of OCT was not a research
aim of this work, we believe the model used in our experiments provides sufficient
evidence for the performance of N3O. In the future, validation based on imaging a
phantom could be used. However, questions about how realistic the phantom is with
respect to the shape, texture, and number of layers will likely still arise.620

Additionally, the assumption that the gain field is a multiplicative model may not
be appropriate, but the resulting images showed improved consistency according
to our initial goal of reducing the variability of intensities within each layer. There is
also evidence to show that a multiplicative model might be correct in some sense
since the attenuation correction of OCT data as modeled in Vermeer et al. (2014)625

and Girard et al. (2011) is multiplicative. It is prudent to point out that our model
is multiplicative within the processed image intensities—log transformed—as is
typically available from the scanner, whereas the attenuation correction models are
multiplicative on the unprocessed image intensities—prior to being log transformed.
We note that the changes in contrast in attenuation correction methods may be due630

to the depth based correction of the intensities. Attenuation correction methods
depend on the integrated intensity along an A-scan to correct the data. This means
that for adjacent layers with large intensity differences (like those in the RPE and
choroid), the correction factor can vary significantly between layers. In some cases,
such as the RPE and choroid interface, the correction brings the intensities of the635

two layers closer together, thus reducing their contrast.
To further validate our method based on the performance of automated methods,

we used the application of image registration, which depends entirely on the intensity
of the data. While alternative cost functions, like mutual information and cross
correlation, may be less sensitive to intensity variations, the method we used was640

validated using the sum of square differences measure and we wanted to maintain
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consistency in our comparison to previous work (Chen et al., 2013, 2014).
When initially undertaking this research, we hypothesized that N3O would im-

prove the accuracy of our retinal layer segmentation algorithm (Lang et al., 2013).
However, our experiments (not described here) have shown no significant differen-645

ces in the results. Since this algorithm uses a classifier to learn boundary positions
based on a variety of features, including both intensity and spatially varying con-
textual features, there is a learned robustness to intensity differences. We believe
that this accounts for the lack of statistical significance. Other work has shown that
intensity normalization is important for generating consistent results using other650

segmentation algorithms Chen et al. (2015), and therefore, we believe N3O would
be an important pre-processing step for such methods. Though some segmentation
methods (Novosel et al., 2017) have been designed specifically to only assume that
layers are locally homogeneous and may not benefit from N3O based correction.

One limitation to running N3O is that it is only applicable to data without severe655

pathologies like macular edema, macular degeneration, and retinal detachments.
There are several reasons why the method may not perform well on such data. First,
the outer boundaries of the retina must be very accurately detected in the first step
of the algorithm. The regression model relies on these boundaries to estimate the
position of each layer. Any disruption will mean that the layers will no longer be flat660

after transformation to MFS. Since we showed that N3 works better when the layers
are flat, this will have an adverse effect on the intensity correction. Second, the
transformation to MFS uses a regression model that was trained on healthy data,
meaning that when applying the method to new data, the shape of the retina should
have a similar shape/structure to what a healthy retina looks like for the boundaries665

to be accurately estimated. Clinical data that maintains a relatively normal shape,
like in patients with multiple sclerosis and glaucoma, where macular thinning in
the inner retina is the predominant pathology, should work with N3O provided the
thinning is not too severe.

To adapt N3O to work for a wider range of pathologies, both the outer retinal670

boundary estimation step and the regression model for estimating the inner bounda-
ries would need to be refined. For the regression model, training data containing
pathological cases can be included. Additionally, a non-linear regression model
could be used to better capture the retinal shape variability. The presence of fluid in
the retina presents another difficult challenge, since the fluid can severely alter the675

position of the boundaries. One possibility for handling these cases is to segment
the fluid and exclude those regions in the regression model. This method, however,
would rely on the layers being relatively normal around the fluid.

In the future, we hope to extend the algorithm to work fully on 3D data, instead of
running independently on 2D B-scan images. While we showed good performance680

when running the algorithm in 2D, we expect improvements in the consistency of
the results between adjacent images to improve after incorporating an added 3D
component to our model The difficulty of implementing this idea is that the gain field
will need two components, one varying in 2D within each image independently, and
one varying smoothly between images in 3D, since we see both types of problems in685

OCT data, depending on the source of the inhomogeneity. Additionally, our approach
is not designed nor has it been evaluated on pathological data such as patients with
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drusen. Given that there are existing methodologies for providing segmentation of
the pathological regions. We believe it is feasible that N3O could be used in an
iterative framework to help reduce inhomogeneity, which in turn turn can provide an690

improved segmentation. With this process iterating until the segmentations stabilize.
Finally, we note the computational performance of our algorithm. The met-

hod takes on average 0.06 seconds per B-scan image for the Spectralis data and
0.12 seconds for the Cirrus data, with code written in MATLAB (MathWorks, Na-
tick, MA, USA). Approximately 40% of this time is spent on converting the data695

to and from MFS (e.g. interpolation), with the remaining time spent on the N3
inhomogeneity correction and intensity normalization. Performance was measu-
red on a 1.73 GHz quad core computer running Windows 7 and ultimately can be
improved by both conversion to a low level programming language and through
parallelization for each B-scan. The code for N3O may be downloaded from700

http://www.nitrc.org/projects/aura_tools/.
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