121 research outputs found

    goCluster integrates statistical analysis and functional interpretation of microarray expression data

    Get PDF
    Motivation: Several tools that facilitate the interpretation of transcriptional profiles using gene annotation data are available but most of them combine a particular statistical analysis strategy with functional information. goCluster extends this concept by providing a modular framework that facilitates integration of statistical and functional microarray data analysis with data interpretation. Results: goCluster enables scientists to employ annotation information, clustering algorithms and visualization tools in their array data analysis and interpretation strategy. The package provides four clustering algorithms and GeneOntology terms as prototype annotation data. The functional analysis is based on the hypergeometric distribution whereby the Bonferroni correction or the false discovery rate can be used to correct for multiple testing. The approach implemented in goCluster was successfully applied to interpret the results of complex mammalian and yeast expression data obtained with high density oligonucleotide microarrays (GeneChips). Availability: goCluster is available via the BioConductor portal at www.bioconductor.org. The software package, detailed documentation, user- and developer guides as well as other background information are also accessible via a web portal at http://www.bioz.unibas.ch/gocluster. Contact: [email protected]

    The Ashbya Genome Database (AGD)—a tool for the yeast community and genome biologists

    Get PDF
    The Ashbya Genome Database (AGD) is a comprehensive online source of information covering genes from the filamentous fungus Ashbya gossypii. The database content is based upon comparative genome annotation between A.gossypii and the closely related budding yeast Saccharomyces cerevisiae taking both sequence similarity and synteny (conserved order and orientation) into account. Release 2 of AGD contains 4718 protein-encoding loci located across seven chromosomes. Information can be retrieved using systematic or standard locus names from A.gossypii as well as budding and fission yeast. Approximately 90% of the genes in the genome of A.gossypii are homologous and syntenic to loci of budding yeast. Therefore, AGD is a useful tool not only for the various yeast communities in general but also for biologists who are interested in evolutionary aspects of genome research and comparative genome annotation. The database provides scientists with a convenient graphical user interface that includes various locus search and genome browsing options, data download and export functionalities and numerous reciprocal links to external databases including SGD, MIPS, GeneDB, KEGG, GermOnline and Swiss-Prot/TrEMBL. AGD is accessible at http://agd.unibas.c

    MIMAS: an innovative tool for network-based high density oligonucleotide microarray data management and annotation

    Get PDF
    BACKGROUND: The high-density oligonucleotide microarray (GeneChip) is an important tool for molecular biological research aiming at large-scale detection of small nucleotide polymorphisms in DNA and genome-wide analysis of mRNA concentrations. Local array data management solutions are instrumental for efficient processing of the results and for subsequent uploading of data and annotations to a global certified data repository at the EBI (ArrayExpress) or the NCBI (GeneOmnibus). DESCRIPTION: To facilitate and accelerate annotation of high-throughput expression profiling experiments, the Microarray Information Management and Annotation System (MIMAS) was developed. The system is fully compliant with the Minimal Information About a Microarray Experiment (MIAME) convention. MIMAS provides life scientists with a highly flexible and focused GeneChip data storage and annotation platform essential for subsequent analysis and interpretation of experimental results with clustering and mining tools. The system software can be downloaded for academic use upon request. CONCLUSION: MIMAS implements a novel concept for nation-wide GeneChip data management whereby a network of facilities is centered on one data node directly connected to the European certified public microarray data repository located at the EBI. The solution proposed may serve as a prototype approach to array data management between research institutes organized in a consortium

    The GermOnline cross-species systems browser provides comprehensive information on genes and gene products relevant for sexual reproduction

    Get PDF
    We report a novel release of the GermOnline knowledgebase covering genes relevant for the cell cycle, gametogenesis and fertility. GermOnline was extended into a cross-species systems browser including information on DNA sequence annotation, gene expression and the function of gene products. The database covers eight model organisms and Homo sapiens, for which complete genome annotation data are available. The database is now built around a sophisticated genome browser (Ensembl), our own microarray information management and annotation system (MIMAS) used to extensively describe experimental data obtained with high-density oligonucleotide microarrays (GeneChips) and a comprehensive system for online editing of database entries (MediaWiki). The RNA data include results from classical microarrays as well as tiling arrays that yield information on RNA expression levels, transcript start sites and lengths as well as exon composition. Members of the research community are solicited to help GermOnline curators keep database entries on genes and gene products complete and accurate. The database is accessible at

    The Transition from Proliferation to Differentiation Is Delayed in Satellite Cells from Mice Lacking MyoD

    Get PDF
    AbstractSatellite cells from adult rat muscle coexpress proliferating cell nuclear antigen and MyoD upon entry into the cell cycle, suggesting that MyoD plays a role during the recruitment of satellite cells. Moreover, the finding that muscle regeneration is compromised in MyoD−/− mice, has provided evidence for the role of MyoD during myogenesis in adult muscle. In order to gain further insight into the role of MyoD during myogenesis in the adult, we compared satellite cells from MyoD−/− and wildtype mice as they progress through myogenesis in single-myofiber cultures and in tissue-dissociated cell cultures (primary cultures). Satellite cells undergoing proliferation and differentiation were traced immunohistochemically using antibodies against various regulatory proteins. In addition, an antibody against the mitogen-activated protein kinases ERK1 and ERK2 was used to localize the cytoplasm of the fiber-associated satellite cells regardless of their ability to express specific myogenic regulatory factor proteins. We show that during the initial days in culture the myofibers isolated from both the MyoD−/− and the wildtype mice contain the same number of proliferating, ERK+ satellite cells. However, the MyoD−/− satellite cells continue to proliferate and only a very small number of cells transit into the myogenin+ state, whereas the wildtype cells exit the proliferative compartment and enter the myogenin+ stage. Analyzing tissue-dissociated cultures of MyoD−/− satellite cells, we identified numerous cells whose nuclei were positive for the Myf5 protein. In contrast, quantification of Myf5+ cells in the wildtype cultures was difficult due to the low level of Myf5 protein present. The Myf5+ cells in the MyoD−/− cultures were often positive for desmin, similar to the MyoD+ cells in the wildtype cultures. Myogenin+ cells were identified in the MyoD−/− primary cultures, but their appearance was delayed compared to the wildtype cells. These “delayed” myogenin+ cells can express other differentiation markers such as MEF2A and cyclin D3 and fuse into myotubes. Taken together, our studies suggest that the presence of MyoD is critical for the normal progression of satellite cells into the myogenin+, differentiative state. It is further proposed that the Myf5+/MyoD− phenotype may represent the myogenic stem cell compartment which is capable of maintaining the myogenic precursor pool in the adult muscle

    Profiling spermatogenic failure in adult testes bearing Sox9-deficient Sertoli cells identifies genes involved in feminization, inflammation and stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Sox9 </it>(<it>Sry </it>box containing gene 9) is a DNA-binding transcription factor involved in chondrocyte development and sex determination. The protein's absence in testicular Sertoli nurse cells has been shown to disrupt testicular function in adults but little is known at the genome-wide level about molecular events concomitant with testicular break-down.</p> <p>Methods</p> <p>To determine the genome-wide effect on mRNA concentrations triggered by the absence of <it>Sox9 </it>in Sertoli cells we analysed adult testicular tissue from wild-type versus mutant mice with high-density oligonucleotide microarrays and integrated the output of this experiment with regulatory motif predictions and protein-protein network data.</p> <p>Results</p> <p>We report the genome-wide mRNA signature of adult testes lacking <it>Sox9 </it>in Sertoli cells before and after the onset of late spermatogenic failure as compared to fertile controls. The GeneChip data integrated with evolutionarily conserved <it>Sox9 </it>DNA binding motifs and regulatory network data identified genes involved in feminization, stress response and inflammation.</p> <p>Conclusions</p> <p>Our results extend previous observations that genes required for female gonadogenesis are up-regulated in the absence of <it>Sox9 </it>in fetal Sertoli cells to the adult stage. Importantly, we identify gene networks involved in immunological processes and stress response which is reminiscent of a phenomenon occurring in a sub-group of infertile men. This suggests mice lacking <it>Sox9 </it>in their Sertoli cells to be a potentially useful model for adult human testicular failure.</p

    Fhl5/Act, a CREM-binding transcriptional activator required for normal sperm maturation and morphology, is not essential for testicular gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The LIM domain protein Fhl5 was previously found to interact with CREM, a DNA binding transcriptional regulator necessary for spermiogenesis in mammals. Co-transfection experiments using heterologous promoter constructs indicated a role for Fhl5 in transcriptional up-regulation of CREM-dependent testicular genes. Male mice lacking Fhl5 were reported to be fertile but displayed partially abnormal sperm maturation and morphology.</p> <p>Methods</p> <p>To identify Fhl5 testicular target genes we carried out two whole-genome expression profiling experiments using high-density oligonucleotide microarrays and total testis samples from Fhl5 wild-type versus homozygous mutant mice first in different and then in isogenic strain backgrounds.</p> <p>Results</p> <p>Weak signal differences were detected in non-isogenic samples but no statistically significant expression changes were observed when isogenic Fhl5 mutant and wild-type samples were compared.</p> <p>Conclusion</p> <p>The outcome of these experiments suggests that testicular expression profiling is extremely sensitive to the genetic background and that Fhl5 is not essential for testicular gene expression to a level detected by microarray-based measurements. This might be due to redundant function of the related and similarly expressed protein Fhl4.</p

    MIMAS 3.0 is a Multiomics Information Management and Annotation System

    Get PDF
    BACKGROUND: DNA sequence integrity, mRNA concentrations and protein-DNA interactions have been subject to genome-wide analyses based on microarrays with ever increasing efficiency and reliability over the past fifteen years. However, very recently novel technologies for Ultra High-Throughput DNA Sequencing (UHTS) have been harnessed to study these phenomena with unprecedented precision. As a consequence, the extensive bioinformatics environment available for array data management, analysis, interpretation and publication must be extended to include these novel sequencing data types. DESCRIPTION: MIMAS was originally conceived as a simple, convenient and local Microarray Information Management and Annotation System focused on GeneChips for expression profiling studies. MIMAS 3.0 enables users to manage data from high-density oligonucleotide SNP Chips, expression arrays (both 3'UTR and tiling) and promoter arrays, BeadArrays as well as UHTS data using MIAME-compliant standardized vocabulary. Importantly, researchers can export data in MAGE-TAB format and upload them to the EBI's ArrayExpress certified data repository using a one-step procedure. CONCLUSION: We have vastly extended the capability of the system such that it processes the data output of six types of GeneChips (Affymetrix), two different BeadArrays for mRNA and miRNA (Illumina) and the Genome Analyzer (a popular Ultra-High Throughput DNA Sequencer, Illumina), without compromising on its flexibility and user-friendliness. MIMAS, appropriately renamed into Multiomics Information Management and Annotation System, is currently used by scientists working in approximately 50 academic laboratories and genomics platforms in Switzerland and France. MIMAS 3.0 is freely available via http://multiomics.sourceforge.net/

    Ashbya Genome Database 3.0: a cross-species genome and transcriptome browser for yeast biologists

    Get PDF
    BACKGROUND: The Ashbya Genome Database (AGD) 3.0 is an innovative cross-species genome and transcriptome browser based on release 40 of the Ensembl developer environment. DESCRIPTION: AGD 3.0 provides information on 4726 protein-encoding loci and 293 non-coding RNA genes present in the genome of the filamentous fungus Ashbya gossypii. A synteny viewer depicts the chromosomal location and orientation of orthologous genes in the budding yeast Saccharomyces cerevisiae. Genome-wide expression profiling data obtained with high-density oligonucleotide microarrays (GeneChips) are available for nearly all currently annotated protein-coding loci in A. gossypii and S. cerevisiae. CONCLUSION: AGD 3.0 hence provides yeast- and genome biologists with comprehensive report pages including reliable DNA annotation, Gene Ontology terms associated with S. cerevisiae orthologues and RNA expression data as well as numerous links to external sources of information. The database is accessible at

    Cross-platform gene expression signature of human spermatogenic failure reveals inflammatory-like response

    Get PDF
    BACKGROUND The molecular basis of human testicular dysfunction is largely unknown. Global gene expression profiling of testicular biopsies might reveal an expression signature of spermatogenic failure in azoospermic men. METHODS Sixty-nine individual testicular biopsy samples were analysed on two microarray platforms; selected genes were validated by quantitative real-time PCR and immunohistochemistry. RESULTS A minimum of 188 transcripts were significantly increased on both platforms. Their levels increased with the severity of spermatogenic damage and reached maximum levels in samples with Sertoli-cell-only appearance, pointing to genes expressed in somatic testicular cells. Over-represented functional annotation terms were steroid metabolism, innate defence and immune response, focal adhesion, antigen processing and presentation and mitogen-activated protein kinase K signalling pathway. For a considerable proportion of genes included in the expression signature, individual transcript levels were in keeping with the individual mast cell numbers of the biopsies. When tested on three disparate microarray data sets, the gene expression signature was able to clearly distinguish normal from defective spermatogenesis. More than 90% of biopsy samples clustered correctly into the corresponding category, emphasizing the robustness of our data. CONCLUSIONS A gene expression signature of human spermatogenic failure was revealed which comprised well-studied examples of inflammation-related genes also increased in other pathologies, including autoimmune disease
    • 

    corecore