193 research outputs found

    Longitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated diamond

    Full text link
    We present systematic measurements of longitudinal relaxation rates (1/T11/T_1) of spin polarization in the ground state of the nitrogen-vacancy (NV^-) color center in synthetic diamond as a function of NV^- concentration and magnetic field BB. NV^- centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV^- center concentrations. Values of (1/T11/T_1) were measured for each spot as a function of BB.Comment: 4 pages, 8 figure

    Gold nanowire synthesis by semi-immersed nanoporous anodic aluminium oxide templates in potassium dicyanoaurate-hexacyanoferrate electrolyte

    Get PDF
    Publisher Copyright: © The Institution of Engineering and Technology 2014.The synthesis reaction of potassium dicyanoaurate-hexacyanoferrate electrolyte and the pertinence of this electrolyte for gold nanowire synthesis are reported. Gold nanowires were synthesised in anodic aluminium oxide (AAO) nanopores using an improved design of the electrochemical cell. AAO templates with thick gold layers were placed on the surface of the electrolyte, thus the ends of the nanopores were opened, allowing the electrolyte to freely diffuse into the nanopores, extruding gases. The presented procedure simplifies the preparation before nanowire synthesis: AAO templates before synthesis do not need to degas and isolate themselves from contact with the electrolyte by a parafilm or a non-conductive adhesive. A considerably faster nanowire growth in the given conditions in the case of a semi-immersed AAO template when compared with the complete immersion method is reported. For comparison with literature data, gold nanowires were synthesised by the classical electrochemical cell using potassium dicyanoaurate-citrate electrolyte. Long, smooth and high purity nanowires were obtained using semi-immersed templates.publishersversionPeer reviewe

    International student projects in a blended setting:How to facilitate problem based project work

    Get PDF

    Relative Humidity Dependent Resistance Switching of Bi2S3 Nanowires

    Get PDF
    Funding Information: This work was done within Latvian National Research Program IMIS 2 and University of Latvia Base/Performance Funding Projects nos. AAP2016/B043 and ZD2010/AZ19. Publisher Copyright: © 2017 Raimonds Meija et al.Electrical properties of Bi2S3 nanowires grown using a single source precursor in anodic aluminum oxide templates are sensitive to the relative humidity in an inert gas environment. Dynamic sensing dependency is obtained and shows presence of spontaneous resistance switching effect between low and high relative humidity states. Employing the thermionic field emission theory, heights of Schottky barriers are estimated from the current-voltage characteristics and in relation to the humidity response. The change of Schottky barrier height is explained by local changes in physically adsorbed water molecules on the surface of the nanowire.publishersversionPeer reviewe

    Application of Ge nanowire for two-input bistable nanoelectromechanical switch

    Get PDF
    Recently, several research groups presented bistable two-terminal nanoelectromechanical switches based on individual single-clamped active element. All presented devices had one input electrode. Similar devices having two or more input electrodes have not been yet investigated. In this work we present the two-input bistable controlled nanoelectromechanical switch based on an individual single-clamped Ge nanowire. The switch is realised using in-situ SEM technique and operating due to balancing of electrostatic, adhesion and elastic forces. The operation conditions of the device are investigated and presented. The advantages and drawbacks of the device are discussed.publishersversionPeer reviewe

    Characterization of resistivity of Sb2S3 semiconductor nanowires by conductive AFM and in-situ methods

    Get PDF
    Conductive AFM and in situ methods were used to determine contact resistance and resistivity of individual Sb2S3 nanowires. Nanowires were deposited on oxidized Si surface for in situ measurements and on Si surface with macroelectrodes for conductive AFM (C-AFM) measurements. Contact resistance was determined by measurement of I(V) characteristics at different distances from the nanowire contact with the macroelectrode and resistivity of nanowires was determined. Sb2S3 is a soft material with low adhesion force to the surface and therefore special precautions were taken during measurements

    Determination of Young's modulus of Sb2S3 nanowires by in situ resonance and bending methods

    Get PDF
    Publisher Copyright: © 2016 Jasulaneca et al.In this study we address the mechanical properties of Sb2S3 nanowires and determine their Young's modulus using in situ electricfield- induced mechanical resonance and static bending tests on individual Sb2S3 nanowires with cross-sectional areas ranging from 1.1·104 nm2 to 7.8·104 nm2. Mutually orthogonal resonances are observed and their origin explained by asymmetric cross section of nanowires. The results obtained from the two methods are consistent and show that nanowires exhibit Young's moduli comparable to the value for macroscopic material. An increasing trend of measured values of Young's modulus is observed for smaller thickness samples.publishersversionPeer reviewe

    Optical vortex trap for resonant confinement of metal nanoparticles

    Get PDF
    The confinement and controlled movement of metal nanoparticles and nanorods is an emergent area within optical micromanipulation. In this letter we experimentally realise a novel trapping geometry near the plasmon resonance using an annular light field possessing a helical phasefront that confines the nanoparticle to the vortex core (dark) region. We interpret our data with a theoretical framework based upon the Maxwell stress tensor formulation to elucidate the total forces upon nanometric particles near the particle plasmon resonance. Rotation of the particle due to orbital angular momentum transfer is observed. This geometry may have several advantages for advanced manipulation of metal nanoparticles

    Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches

    Get PDF
    Funding Information: This research was funded by the European Regional Development Fund (project no. 1.1.1.1/16/A/256, ?Creation of nanoelectromechanical switches?). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Electrostatically actuated nanoelectromechanical (NEM) switches hold promise for operation with sharply defined ON/OFF states, high ON/OFF current ratio, low OFF state power consumption, and a compact design. The present challenge for the development of nanoelectromechanical system (NEMS) technology is fabrication of single nanowire based NEM switches. In this work, we demonstrate the first application of CuO nanowires as NEM switch active elements. We develop bottom-up and top-down approaches for NEM switch fabrication, such as CuO nanowire synthesis, lithography, etching, dielectrophoretic alignment of nanowires on electrodes, and nanomanipulations for building devices that are suitable for scalable production. Theoretical modelling finds the device geometry that is necessary for volatile switching. The modelling results are validated by constructing gateless double-clamped and single-clamped devices on-chip that show robust and repeatable switching. The proposed design and fabrication route enable the scalable integration of bottom-up synthesized nanowires in NEMS.publishersversionPeer reviewe

    A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing

    Get PDF
    We report the fabrication and characterization of an optical fiber biochemical sensing probe based on localized surface plasmon resonance (LSPR) and spectra reflection. Ordered array of gold nanodots was fabricated on the optical fiber end facet using electron-beam lithography (EBL). We experimentally demonstrated for the first time the blue shift of the LSPR scattering spectrum with respected to the LSPR extinction spectrum, which had been predicted theoretically. High sensitivity [195.72 nm/refractive index unit (RIU)] of this sensor for detecting changes in the bulk refractive indices has been demonstrated. The label-free affinity bio-molecules sensing capability has also been demonstrated using biotin and streptavidin as the receptor and the analyte
    corecore