2,466 research outputs found

    Child’s play at war memorials: insights from a social media debate

    Get PDF
    Each year, thousands of children visit memorials and other heritage sites during family or school trips, yet heritage scholars possess little understanding of their experiences. Despite its absence from the scholarly literature, children’s exploratory play at war memorials recurs frequently in the popular media. Extensive social media interest suggests that public sentiment, often emotional and vividly expressed, deserves study as a potential influence on children’s experiences at these and other dark heritage sites. This paper provides new insights of behavioral expectations for children at memorials, based on content analysis of 150 comments on a viral social media post picturing children playing on the Vietnam Women’s Memorial in Washington, DC. Conducting a stance analysis of comments, we considered commenters’ behavioral expectations, meanings they ascribed to memorials, and rationales for their intensely worded positions. Commenters shared several values: that memorials represented soldiers’ sacrifice, veterans’ service, general places for respect or to do what is right, or artistic value. Yet despite these shared rationales, many commenters expressed polarized opinions of children’s play at memorials. Commenters also referenced memorials and battlefields worldwide. This study provides greater understanding of the cultural context of children’s visits to memorials and other sites of painful heritage

    Classical and Quantum Equations of Motion for a BTZ Black String in AdS Space

    Full text link
    We investigate gravitational collapse of a (3+1)(3+1)-dimensional BTZ black string in AdS space in the context of both classical and quantum mechanics. This is done by first deriving the conserved mass per unit length of the cylindrically symmetric domain wall, which is taken as the classical Hamiltonian of the black string. In the quantum mechanical context, we take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning that the horizon is not an obstacle for him/her. The most interesting quantum mechanical effect comes in when investigating near the origin. First, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Second, the Schr\"odinger equation describing the behavior near the origin displays non-local effects, which depend on the energy density of the domain wall. This is manifest in that derivatives of the wavefunction at one point are related to the value of the wavefunction at some other distant point.Comment: 9 pages, 1 figure. Minor Clarification and corrections. Accepted for Publication in JHE

    Two binary stars gravitational waves - homotopy perturbation method

    Full text link
    Homotopy perturbation is one of the newest methods for numerical analysis of deferential equations. We have used for solving wave equation around a black hole. Our conclusions have this method far reaching consequences for comparison of theoritical physics and experimental physics.Comment: The manuscript considers the important problem of solve equation wave around a black hole. We have solved that by using Homotopy perturbation methods. Homotopy perturbation is one of the newest methods for numerical analysis of deferential equations. Our conclusions have far reaching consequences for comparison of theoritical physics and experimental physic

    Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling

    Get PDF
    In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.We acknowledge financial support from the Engineering and Physical Sciences Research Council of the U.K. (EPSRC). J.M.R. and M.T. thank the Winton Programme for the Physics of Sustainability (University of Cambridge). L.M.P.-O. thanks the Cambridge Home European Scheme for financial support. L.M.P.-O. and J.P.H.R. also thank the Nano Doctoral Training Center (NanoDTC) of the EPSRC for financial support. M.A.-J. thanks Nyak Technology Limited for a PhD scholarship. F.D. acknowledges funding from a Herchel Smith Research Fellowship

    Understanding the dynamics of Toll-like Receptor 5 response to flagellin and its regulation by estradiol

    Get PDF
    © 2017 The Author(s). Toll-like receptors (TLRs) are major players of the innate immune system. Once activated, they trigger a signalling cascade that leads to NF-ΰ B translocation from the cytoplasm to the nucleus. Single cell analysis shows that NF-ΰ B signalling dynamics are a critical determinant of transcriptional regulation. Moreover, the outcome of innate immune response is also affected by the cross-talk between TLRs and estrogen signalling. Here, we characterized the dynamics of TLR5 signalling, responsible for the recognition of flagellated bacteria, and those changes induced by estradiol in its signalling at the single cell level. TLR5 activation in MCF7 cells induced a single and sustained NF-k B translocation into the nucleus that resulted in high NF-k B transcription activity. The overall magnitude of NF-k B transcription activity was not influenced by the duration of the stimulus. No significant changes are observed in the dynamics of NF-k B translocation to the nucleus when MCF7 cells are incubated with estradiol. However, estradiol significantly decreased NF-k B transcriptional activity while increasing TLR5-mediated AP-1 transcription. The effect of estradiol on transcriptional activity was dependent on the estrogen receptor activated. This fine tuning seems to occur mainly in the nucleus at the transcription level rather than affecting the translocation of the NF-k B transcription factor

    Quasi-Normal Modes of Stars and Black Holes

    Get PDF
    Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in Relativity

    X-ray spectropolarimetric measurements of the Kerr metric

    Get PDF
    It is thought that the spacetime geometry around black hole candidates is described by the Kerr solution, but an observational confirmation is still missing. Today, the continuum-fitting method and the analysis of the iron Kα\alpha line cannot unambiguously test the Kerr paradigm because of the degeneracy among the parameters of the system, in the sense that it is impossible with current X-ray data to distinguish a Kerr black hole from a non-Kerr object with different values of the model parameters. In this paper, we study the possibility of testing the Kerr nature of black hole candidates with X-ray spectropolarimetric measurements. Within our simplified model that does not include the effect of returning radiation, we find that it is impossible to test the Kerr metric and the problem is still the strong correlation between the spin and possible deviations from the Kerr geometry. Moreover, the correlation is very similar to that of other two techniques, which makes the combination of different measurements not very helpful. Nevertheless, our results cannot be taken as conclusive and, in order to arrive at a final answer, the effect of returning radiation should be properly taken into account.Comment: 12 pages, 8 figures. v2: refereed versio
    • …
    corecore