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Abstract Quasi-periodic oscillations (QPOs) are a com-
mon feature in the X-ray flux of stellar-mass black hole can-
didates, but their exact origin is not yet known. Recently,
some authors have pointed out that data of GRO J1655-40
simultaneously show three QPOs that nicely fit in the rela-
tivistic precession model. However, they find an estimate of
the spin parameter that disagrees with the measurement of
the disk’s thermal spectrum. In the present work, I explore
the possibility of using the relativistic precession model to
test the nature of the black hole candidate in GRO J1655-40.
If properly understood, QPOs may become a quite power-
ful tool to probe the spacetime geometry around black hole
candidates, especially if used in combination with other tech-
niques. It turns out that the measurements of the relativistic
precession model and of the disk’s thermal spectrum may
be consistent if we admit that the black hole candidate in
GRO J1655-40 is not of the Kerr type.

1 Introduction

In four-dimensional general relativity, uncharged black holes
(BHs) are described by the Kerr solution and are completely
characterized by only two parameters: the mass M and the
spin angular momentum J . This is the result of the well-
known “no-hair” theorem [1–3]. M and J cannot be com-
pletely arbitrary, but they must satisfy the condition for the
existence of the event horizon |a| ≤ M , where a = J/M is
the spin parameter. Astrophysical BHs, if they exist, should
be well described by the Kerr metric: initial deviations from
the Kerr geometry are expected to be quickly radiated away
through the emission of gravitational waves [4,5], an initially
non-vanishing electric charge would be shortly neutralized
in their highly ionized environment [6], while the presence
of the accretion disk is completely negligible in most cases.
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Astronomical observations have discovered at least two
classes of BH candidates: stellar-mass objects in X-ray binary
systems with a mass M ≈ 5–20 M�, and super-massive bod-
ies in galactic nuclei with a mass M ∼ 105–109 M� [7]. All
these objects are thought to be the Kerr BHs of general rela-
tivity, but their actual nature is still to be verified. Robust mea-
surements of the masses of these objects can be obtained from
dynamical methods, by studying the orbital motion of gas or
of individual stars around them. Such measurements are the
main argument to support the Kerr BH hypothesis, because
these objects are so heavy that they cannot be explained other-
wise without introducing new physics. The non-observation
of electromagnetic radiation emitted by the possible surface
of these objects may also be interpreted as an indication for
the existence of an event horizon [8,9] (but see [10,11]).
However, there is no evidence that the spacetime geometry
around them is described by the Kerr solution.

The nature of astrophysical BH candidates may be poten-
tially tested with the already available X-ray data, because the
features of the electromagnetic radiation emitted by the gas
of the accretion disk can provide information on the space-
time geometry around these compact objects (for a review,
see e.g. [12,13]). The study of the disk’s thermal spectrum
(continuum-fitting method) [14–16] and the analysis of the
profile of the broad Kα iron line [17–19] are today the only
two relatively mature techniques to probe the metric around
BH candidates. They have been developed to infer the spin
parameter of these objects under the assumption of the Kerr
spacetime, but more recently they have been extended to
check the Kerr background [20–28]. The main problem to
test the Kerr BH paradigm with these techniques is that it is
extremely difficult to get independent estimates of the spin
parameter and of possible deviations from the Kerr solution.
In other words, one can usually only constrain a combination
of the spin and of possible deviations, because the proper-
ties of the radiation emitted by the gas in the accretion disk
around a non-Kerr object with a certain spin can be very sim-
ilar to the ones produced in the spacetime of a Kerr BH with
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different spin. The possibility of combining the continuum-
fitting method and the iron line analysis for the same object
has been discussed in Ref. [29]. For some BH solutions, the
combination of the two approaches is not very helpful and
the Kerr metric cannot be unambiguously tested. In other
BH backgrounds, the study of the disk’s thermal spectrum
and the analysis of the iron line profile of a specific source
can do the job, but quite accurate measurements are usually
necessary. The possibility of using the estimate of the power
of transient or steady jets with the measurements from the
continuum-fitting method has been explored in Ref. [30,31].
While the approach seems to be promising, the mechanisms
responsible for the formation of these jets are not known and
different interpretations lead to different conclusions. In the
future, high resolution sub-mm observations will be hope-
fully able to detect the “shadow” of nearby super-massive
BH candidates, opening a new window to test the spacetime
geometry around these objects [32–35].

Quasi-periodic oscillations (QPOs) are a very promising
tool to get precise information on the spacetime geometry
around stellar-mass BH candidates. They are seen as peaks
in the X-ray power density spectra of the source. At present,
however, the exact physical mechanism responsible for the
production of these QPOs is not understood and several dif-
ferent scenarios have been proposed, including relativistic
precession models [36–38], diskoseismology models [39–
41], resonance models [42–44], and p-mode oscillations of
an accretion torus [45,46]. In most scenarios, the frequen-
cies of the QPOs are directly related to the characteristic
orbital frequencies of a test particle, which are determined
only by the background metric and are independent of the
complicated astrophysical processes of the accretion. While
such a correlation with the fundamental frequencies of the
spacetime may sound quite artificial at first, it is possible to
show that there is indeed a direct relation between these fre-
quencies and the ones of the oscillation modes of the fluid
accretion flow. The significant advantage of the use of QPOs
with respect to other techniques is that the frequencies of
the QPOs can be measured with high accuracy, and therefore
they can potentially be used to get very precise measure-
ments of the parameters of the spacetime geometry of the
compact object. Attempts to use the QPOs to test the Kerr
metric around BH candidates are reported in [47–49]. How-
ever, since we do not know the exact mechanism responsible
for these oscillations, such a powerful approach cannot yet be
used. Different models relate the fundamental frequencies of
the background and the observed frequencies of the QPOs in
a different way, and current X-ray data are not able to select
the correct model and rule out the others.

Very recently, some authors have pointed out that the
X-ray data of GRO J1655-40 nicely fit in the relativistic
precession model [50]. The key-point is that this source is
the only one for which three simultaneous QPOs have been

observed. In the Kerr spacetime, the three fundamental fre-
quencies of the background metric (orbital frequency, radial
epicyclic frequency, and vertical epicyclic frequency) depend
on the radius r , the BH mass M , and the BH spin parame-
ter a. Assuming that the three observed QPOs are generated
at the same radius r , one has a system of three equations
with three unknown variables (r , M , and a). The system of
the equations can therefore be solved to find r , M , and a,
which can be determined with a quite small uncertainty due
to the high precision of the measurement of the frequen-
cies. The authors of Ref. [50] find that the inferred value
of M is in agreement with the value obtained by dynamical
methods in Ref. [51]. In support of the relativistic preces-
sion model, the authors of Ref. [50] show also that the X-ray
data of GRO J1655-40 with two simultaneous QPOs can be
nicely interpreted as two of the three frequencies generated
at radii r larger than the one found in the data with three fre-
quencies. However, their spin measurement is not consistent
with the one obtained from the continuum-fitting method in
Ref. [52].

The aim of the present paper is to investigate the possi-
bility of using the data and the interpretation of Ref. [50]
to test the spacetime geometry around the BH candidate in
GRO J1655-40. For this purpose, it is convenient to consider
a metric more general than the Kerr one, with one (or more)
deformation parameter(s). The latter is used to measure pos-
sible deviations from the Kerr background, which must be
recovered when the deformation parameter vanishes. Now
one needs an independent measurement of the mass of the
BH candidate, so that it is possible to solve the system of
equations of the three frequencies to find the three unknown
quantities (r , a, and the deformation parameter). The result is
an allowed region on the spin-deformation parameter plane,
just like the authors of Ref. [50] find an allowed region on
the mass-spin plane. The strong correlation between the spin
and possible deviations from the Kerr solution found with
other approaches is present even here, but the size of the
allowed region is much smaller, supporting the idea that,
if properly understood, QPOs can be a very powerful tool
to probe the spacetime geometry around BH candidates. In
order to check the validity of this result, the latter is compared
with the allowed region on the spin-deformation parameter
plane inferred from the study of the disk’s thermal spec-
trum of GRO J1655-40 [52]. It turns out that the disagree-
ment between the two measurements found in the Kerr metric
cannot be solved if we believe in the mass measurement of
Ref. [51]. However, a different measurement of the mass of
the BH candidate in GRO J1655-40 is reported in [52]. If we
believe in the mass measurement of this work, the one found
in the Kerr background with the relativistic precession model
in [50] is wrong, while it is possible to reconcile the QPO
measurement of the spin with the disk’s thermal spectrum
analysis if we allow for deviations from the Kerr geometry.
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In the latter case, the non-vanishing deformation parame-
ter would be compatible with the one inferred in the second
paper in [30,31] from the combination of the measurements
of the disk spectrum and the estimates of the power of steady
jets. While that may be accidental, if the relativistic preces-
sion model turns out to be right we may suspect that the
continuum-fitting method regularly overestimates the spin
parameter or even speculate on the violation of the Kerr BH
paradigm.

The content of the paper is as follows. In Sect. 2, I briefly
review the relativistic precession model and the results of
Ref. [50], valid in the Kerr background. In Sect. 3, I apply
this approach to the rotating Bardeen BH metric [53–55] and
to the Johannsen–Psaltis background [56] to find an allowed
region on the spin-deformation parameter plane. In Sect. 4,
I discuss these results, which are also compared with the
constraints that can be obtained from the continuum-fitting
method. Summary and conclusions are reported in Sect. 5.
Throughout the paper, I use units in which GN = c = 1,
unless stated otherwise.

2 The relativistic precession model

The relativistic precession model was originally proposed
to explain QPOs in low-mass X-ray binaries with a neu-
tron star and was then extended to systems with stellar-
mass BH candidates [36–38]. It does not really explain the
origin of the QPOs, but it simply relates the observed fre-
quencies of the QPOs with the three fundamental frequen-
cies of the background metric. The latter are the Keple-
rian frequency of equatorial circular orbits (orbital frequency
νφ) and the frequencies of small perturbations along the
radial and vertical direction around the equatorial circular
orbit (respectively, the radial epicyclic frequency νr and the
vertical epicyclic frequency νθ ). In the Kerr metric, these
frequencies can be written in analytic form and are given
by

νφ =
(

1

2π

)
M1/2

r3/2 ± aM1/2 , (1)

νr = νφ

(
1 − 6M

r
± 8aM1/2

r3/2 − 3a2

r2

)
, (2)

νθ = νφ

(
1 ∓ 4aM1/2

r3/2 + 3a2

r2

)
, (3)

where the upper (lower) sign is for the case of corotating
(counterrotating) orbits. From these three frequencies, one
can find the periastron precession frequency νp and the nodal
precession frequency νn, given by

νp = νφ − νr ,

νn = νφ − νθ . (4)

All these frequencies depend on three parameters; that is, the
radius of the orbit r and the two parameters of the background
geometry, the BH mass M , and the BH spin parameter a.

In X-ray binaries with a BH candidate, observations have
detected low-frequency QPOs of different nature (type-A,
type-B, and type-C) in the range ∼0.1–30 Hz, and high-
frequency QPOs at ∼100–400 Hz. The latter may be seen
in pairs and they are therefore called lower and upper high-
frequency QPOs. The crucial point is to find the correct rela-
tion between the fundamental frequencies of the background
metric and the ones of the observed QPOs. In Ref. [50], the
authors propose the following interpretation (which is not
exactly the original proposal of the relativistic precession
model in [36–38]). The low-frequency type-C QPO νC would
correspond to the nodal precession frequency νn, while the
lower high-frequency QPO νL and the upper high-frequency
QPO νU would be associated, respectively, to the periastron
precession frequency νp and to the orbital frequency νφ :

νC = νn, νL = νp, νU = νφ. (5)

The case of the BH candidate in GRO J1655-40 is special,
because it is the only BH system for which we have data
with three simultaneous QPOs. The low-frequency type-C
QPO used in [50] was identified in Ref. [57], while the two
high-frequency QPOs were found in [58]. Since one sees
simultaneously the three frequencies, it is possible to argue
that they may be associated to oscillations of the fluid flow
at the same radial coordinate. In this way, one can solve the
system of equations of the three frequencies (νC, νL, and νU)
to find the three unknown variables (r , M , and a). The system
of equations cannot be solved analytically and therefore one
has to find the three parameters numerically. Here I use a
different approach with respect to Ref. [50] and I compute
the χ -square as follows:

χ2
0 (r, M, a) = (νC − νn)

2

σ 2
C

+
(
νL − νp

)2

σ 2
L

+
(
νU − νφ

)2

σ 2
U

. (6)

For GRO J1655-40, we have [50]

νC = 17.3 Hz, σC = 0.1 Hz,

νL = 298 Hz, σL = 4 Hz,

νU = 441 Hz, σU = 2 Hz.

(7)

The minimum of χ2
0 (which should be zero in this case,

as the system of equations has always a solution) gives
the estimate of r , M , and a, while the intervals defined by
χ2

0 = χ2
0, min +	χ2

0 give the ranges of r , M , and a at the con-

fidence level (C.L.) set by 	χ2
0 . In the case of three degrees of

freedom, 	χ2
0 = 3.53, 8.03, and 14.16 correspond, respec-

tively, to 68.3, 95.4, and 99.7 % C.L., which are the proba-
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Fig. 1 Estimate of the mass M and of the spin parameter a/M of the
BH candidate in GRO J1655-40 with the relativistic precession model
of Ref. [50] and under the assumption of the Kerr background. With
the approach discussed in Sect. 2, the result is M/M� = 5.30 ± 0.11
and a/M = 0.286 ± 0.006 (68.3 % C.L.). The vertical black thin-

dotted lines are the boundaries of the optical measurement of the mass
of this object found in Ref. [51], while the orange dashed-dotted curve
is the boundary of the allowed region for the spin parameter via the
continuum-fitting method obtained in Ref. [52]. The right panel is just
the enlargement of the left one. See the text for more details

bility intervals designated as 1, 2, and 3 standard deviation
limits.

Following this procedure, one finds the plots in Fig. 1. The
final result for the mass and the spin parameter is M/M� =
5.30 ± 0.11 and a/M = 0.286 ± 0.006 (68.3 % C.L.). The
estimate of the mass is consistent with the value inferred
by optical observations in Ref. [51], M/M� = 5.4 ± 0.3,
which corresponds to the black thin-dotted lines in the left
panel in Fig. 1. However, in the literature there is also another
mass measurement of the BH candidate in GRO J1655-40,
M/M� = 6.3 ± 0.3, reported in [52]. The orange dashed-
dotted curve corresponds instead to the measurement of the
spin parameter inferred via the continuum-fitting method in
Ref. [52], a/M = 0.7 ± 0.1.1 Such a measurement does
depend on the BH mass M , but in Fig. 1 I show only the
best estimate for a/M assuming that the mass (which is an
input parameter in the continuum-fitting method) obtained
by optical measurements is correct. In Ref. [52], the authors
use M/M� = 6.3 ± 0.3, not the one of Ref. [51], but the
effect on the estimate of the spin is not large and cannot solve
the disagreement between the relativistic precession model
and the continuum-fitting method. The measurement of the
frequencies of QPOs can potentially provide very precise
estimates of the mass M and the spin parameter a compared
to other techniques. However, the measurements from the rel-
ativistic precession model and the continuum-fitting method
provide inconsistent results, which means that either one of
the two approaches provides an erroneous value of the spin
parameter a/M , or both. In the next sections, I will check if
the two techniques can give consistent results if we allow for
deviations from the Kerr background.

1 Actually, the measurement in Ref. [52] is a/M = 0.70 ± 0.05 at
1 sigma, but since it was one of the first measurements obtained with
the continuum-fitting method by the CfA group, in later studies using
this result the uncertainty has been conservatively doubled by the same
authors.

3 Testing the Kerr nature of GRO J1655-40

A common approach to test the nature of astrophysical BH
candidates and constrain possible deviations from the Kerr
solution is to consider a more general background, which
includes the Kerr metric as a special case. In addition to the
mass M and the spin parameter a, the spacetime geometry is
characterized by at least one more parameter, which is used to
measure possible deviations from the Kerr background. The
idea is to infer M , a, and such a deformation parameter from
observational data and check if the latter require a vanishing
deformation parameter; that is, the compact object is a Kerr
BH. On the contrary, if it turns out that observations require
a non-vanishing deformation parameter, the BH candidate
may not be a Kerr BH.

Let us now revise the relativistic precession model in
a generic stationary, axisymmetric, and asymptotically flat
spacetime. The line element of the spacetime can be written
in the canonical form,

ds2 = gttdt
2 + grrdr2 + gθθdθ2 + 2gtφdtdφ + gφφdφ2,

(8)

where the metric components are independent of the t and φ

coordinates, which implies the existence of two constants of
motion: the conserved specific energy at infinity, E , and the
conserved z-component of the specific angular momentum
at infinity, Lz . This fact allows one to write the t- and φ-
component of the 4-velocity of a test particle as

ṫ = Egφφ + Lzgtφ
g2
tφ − gtt gφφ

, φ̇ = − Egtφ + Lzgtt
g2
tφ − gtt gφφ

. (9)

From the conservation of the rest mass, gμν ẋμ ẋν = −1, we
can write

grr ṙ
2 + gθθ θ̇

2 = Veff(r, θ, E, Lz), (10)
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where the effective potential Veff is given by

Veff = E2gφφ + 2ELzgtφ + L2
z gtt

g2
tφ − gtt gφφ

− 1. (11)

Circular orbits on the equatorial plane are located at the zeros
and the turning points of the effective potential: ṙ = θ̇ = 0,
which implies Veff = 0, and r̈ = θ̈ = 0, requiring, respec-
tively, ∂r Veff = 0 and ∂θVeff = 0. From these conditions,
one can obtain the orbital angular velocity �φ = dφ/dt , E ,
and Lz of the test particle:

�φ = −∂r gtφ ± √
(∂r gtφ)2 − (∂r gtt )(∂r gφφ)

∂r gφφ

, (12)

E = − gtt + gtφ�φ√
−gtt − 2gtφ�φ − gφφ�2

φ

, (13)

Lz = gtφ + gφφ�φ√
−gtt − 2gtφ�φ − gφφ�2

φ

, (14)

where in �φ the sign is + (−) for corotating (counterrotating)
orbits. The orbital frequency is simply νφ = �φ/2π . The
orbits are stable under small perturbations if ∂2

r Veff ≤ 0 and
∂2
θ Veff ≤ 0.

The radial and vertical epicyclic frequencies can be
quickly computed by considering small perturbations around
circular equatorial orbits, respectively, along the radial and
vertical direction. If δr and δθ are the small displacements
around the mean orbit (i.e. r = r0 + δr and θ = π/2 + δθ ),
we find they are governed by the following differential equa-
tions:

d2δr

dt2 + �2
r δr = 0, (15)

d2δθ

dt2 + �2
θ δθ = 0, (16)

where

�2
r = − 1

2grr ṫ2

∂2Veff

∂r2 , (17)

�2
θ = − 1

2gθθ ṫ2

∂2Veff

∂θ2 . (18)

The radial epicyclic frequency is thus νr = �r/2π and the
vertical one is νθ = �θ/2π .

As a first example of non-Kerr background, we can con-
sider the Bardeen BH metric [53–55]. In Boyer–Lindquist
coordinates, the non-vanishing metric coefficients are

gtt = −
(

1 − 2mr



)
, gtφ = −2amr sin2 θ


,

gφφ =
(
r2 + a2 + 2a2mr sin2 θ



)
sin2 θ,

grr = 

	
, gθθ = ,

(19)

where

 = r2 + a2 cos2 θ, 	 = r2 − 2mr + a2,

m = M

(
r2

r2 + g2

)3/2

. (20)

g can be interpreted as the magnetic charge of a non-linear
electromagnetic field or just as a quantity introducing a devi-
ation from the Kerr metric. The position of the even horizon
is given by the larger root of 	 = 0 and therefore there is a
bound on the maximum value of the spin parameter, above
which there are no BHs. The maximum value of a is M
for g/M = 0 (Kerr case), and decreases as g/M increases.
The black thin-dotted curve in the left panel of Fig. 2 is
the boundary separating BH solutions (left bottom corner)
and horizonless solutions (right top corner) on the plane
(a/M, g/M). Since the horizonless solutions are likely very
unstable objects with a short lifetime due to the ergoregion
instability, they can be safely ignored.

Now we have three equations for νn, νp, and νφ and four
unknown variables (r , M , a, and g). In order to solve the
system, we need an independent estimate of the mass M . In
this case, the χ -square becomes

χ2(r, a, g) = min
M

[
χ2

0 + (M − Mopt)
2

σ 2
M

]
, (21)

where χ2
0 is given in Eq. (6) and the three degrees of

freedom are now r , a, and g. For Mopt = 5.4 M� and
σM = 0.3 M� [51], the result is shown in the left panel
of Fig. 2, where the constraints on the spin and on possible
deviations from the Kerr solutions are

a/M = 0.279+0.012
−0.036,

g/M < 0.56, (22)

at the 68.3 % C.L.
To check the genericity of this result found in the specific

case of the Bardeen BH solution, it is convenient to repeat
the same exercise with a different background metric. As sec-
ond example, now I consider the Johannsen–Psaltis metric,
whose non-vanishing metric coefficients in Boyer–Lindquist
coordinates are [56]

gtt = −
(

1 − 2Mr



)
(1 + h),

gtφ = −4aMr sin2 θ


(1 + h),

gφφ = sin2 θ

(
r2 + a2 + 2a2Mr sin2 θ



)

+ a2( + 2Mr) sin4 θ


h,

grr = (1 + h)

	 + a2h sin2 θ
, gθθ = , (23)
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Fig. 2 Constraints on the spacetime geometry around the BH candidate
in GRO J1655-40 with the relativistic precession model (blue dashed
and green dotted lines) and the continuum-fitting method (orange
dashed-dotted lines). The relativistic precession model assumes the

mass measurement M/M� = 5.4±0.3 reported in Ref. [51]. Left panel
Bardeen background, where the black thin-dotted line is the boundary
separating BHs from horizonless objects.Right panel Johannsen–Psaltis
background with deformation parameter ε3. See the text for more details

where

 = r2 + a2 cos2 θ, 	 = r2 − 2Mr + a2,

h =
∞∑
k=0

(
ε2k + Mr


ε2k+1

)(
M2



)k

. (24)

Such a metric has an infinite number of deformation param-
eters εk (k = 0, 1, 2,…). However, ε0 = ε1 = 0 in order
to recover the correct Newtonian limit, while ε2 is strongly
constrained by Solar System experiments [56]. For the sake
of simplicity, I will consider the case of a single deforma-
tion parameter ε3 and set to zero all the others. One can then
define the counterpart of the χ -square in Eq. (21):

χ2(r, a, ε3) = min
M

[
χ2

0 + (M − Mopt)
2

σ 2
M

]
. (25)

With the mass measurement of Ref. [51], the result is the plot
in the right panel of Fig. 2. There is a quite pronounced cor-
relation between the estimate of the spin and the deformation
parameters, as shown by the thin but quite inclined position
of the allowed region. The constraints are

a/M = 0.27+0.06
−0.05,

ε3 = 0.5+2.1
−2.7, (26)

at the 68.3 % C.L.

4 Discussion

As shown in Fig. 2, while the relativistic precession interpre-
tation of the data of GRO J1655-40 is perfectly consistent
with the hypothesis that the spacetime around the BH can-
didate in this source is described by the Kerr metric, large
deviations from the Kerr solutions are also allowed. One may
wonder whether it is possible to solve the tension between
the measurement inferred from this approach and the one
obtained by the continuum-fitting method in Ref. [52]. The

estimate of the spin parameter found in the Kerr background
in [52] can be quickly translated in an allowed region on the
spin-deformation parameter plane by exploiting the fact that
(at least for not too large deformation parameters) the disk’s
thermal spectrum around a deformed object with a certain
spin is extremely similar to the one of a Kerr BH with differ-
ent spin. Indeed, if we consider a non-Kerr BH metric and
we fix the value of the deformation parameter, we can find
a one-to-one correspondence between one of these objects
and a Kerr BH whose disk’s thermal spectrum is very simi-
lar.

With this spirit, if in the Kerr case the allowed spin parame-
ter range is 0.6 < a/M < 0.8, one can just find for any non-
vanishing deformation parameter the spin of the non-Kerr
BH with spectrum similar to a Kerr BH with a/M = 0.6
and a/M = 0.8. The result is the boundary of the allowed
region in the spin-deformation parameter plane, which is the
orange dashed-dotted line in Fig 2. Here the comparison of
the spectra has been done using theχ -square procedure of, for
instance, Ref. [13]. The fact that there is not overlap between
the allowed regions suggested by the relativistic precession
approach and by the continuum-fitting method simply means
that the tension between the two measurements cannot be
solved assuming a different spacetime. One arrives at the
same conclusions if the deformation parameter ε3 of the
Johansenn–Psaltis background is replaced by higher order
deformations. That has been explicitly checked for ε4, ε5, ε6,
and ε7, and the general trend suggests it is correct for any εk .
While it is not possible to firmly exclude the possibility that
some non-Kerr background can solve the tension between the
two measurements, the failure of all these attempts suggests
that such a possibility is at least not very natural.

For GRO J1655-40, in the literature there are also some
estimates of its spin parameter with the Kα iron line
method [59,60]. While the available data are not very good,
these studies suggest that, in the case of a Kerr BH, the object
would have a quite high value of the spin parameter, at the
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Fig. 3 As in Fig. 2, in the case in which the relativistic precession model uses the mass measurement M/M� = 6.3 ± 0.3 reported in Ref. [52]

 1

 10

 100

 1000

 100

 (
H

z)

r (km)

Bardeen metric

p

n

B1
B2

 1

 10

 100

 1000

 100
 (

H
z)

r (km)

Johannsen-Psaltis metric

p

n

JP1
JP2

Fig. 4 Orbital frequency νφ , periastron precession frequency νp, and
nodal precession frequency νn as functions of the orbital radius r .
Left panel Bardeen background with M/M� = 5.40, a/M = 0.279,
and g/M = 0.23 (B1) and with M/M� = 5.95, a/M = 0.243,

and g/M = 0.56 (B2). Right panel Johannsen–Psaltis background
with M/M� = 5.42, a/M = 0.274, and ε3 = 0.5 (JP1) and with
M/M� = 4.84, a/M = 0.339, and ε3 = −2.2 (JP2). See the text for
more details

level ofa/M ∼ 0.9 or even higher. It seems thus that the three
approaches (relativistic precession model, disk’s spectrum,
iron line) give very different results. Following the study of
Ref. [29], it is easy to conclude that for the Bardeen metric it
is not possible to fix the tension between the three measure-
ments, which continue to provide three different spins for
any value of g/M . In the case of the Johannsen–Psaltis solu-
tion, the results from the continuum-fitting and the iron line
analysis may be consistent in the case of a negative ε3 [29].
The compatibility between the relativistic precession inter-
pretation and the other approaches seems, however, to be
impossible.

Let us now consider what happens if we consider the mass
measurement M/M� = 6.3 ± 0.3 reported in [52], which
is not consistent with the one of [51]. If we use this value
as input parameter in the relativistic precession model, we
find the plots in Fig. 3, respectively for the Bardeen (left
panel) and Johannsen–Psaltis (right panel) backgrounds. In
the Bardeen metric, the relativistic precession model and
the disk’s thermal spectrum are still inconsistent. In the
Johannsen–Psaltis spacetime, we find an overlap between
the 2-standard deviation region of the relativistic precession
model and the 1-standard deviation limit of the continuum-
fitting method. The measurement of the relativistic preces-
sion model is

a/M = 0.20 ± 0.04,

ε3 = 3.8+2.4
−2.1, (27)

at 68 % C.L. Such a measurement is consistent with the Kerr
BH hypothesis within a 3-standard deviation limit (not within
1- and 2-standard deviation limits), but in combination with
the analysis of the thermal spectrum of the disk favors a non-
vanishing deformation parameter at the level of ε3 ∼ 7. It is
worth noting that the same value was found in [31] from the
combination of the measurements of the continuum-fitting
method and of the power of steady jets for five BH candidates.

Lastly, it is important to stress that future X-ray satellites
like LOFT can have the capabilities to test the relativistic
precession model and hopefully provide robust and strong
constraints on the nature of stellar-mass BH candidates. In
particular, it would be extremely useful to have observations
of QPOs at different radii. The three simultaneous QPOs in
the available data seem to occur at a small radial coordi-
nate, r ∼ 45 km, which corresponds to a radius close to
the innermost stable circular orbit of these spacetimes. Fig-
ure 4 shows the orbital frequency νφ , the periastron preces-
sion frequency νp, and the nodal frequency νn as a function
of the radial coordinate r for the Bardeen and Johannsen–
Psaltis backgrounds, respectively left and right panels. In
each panel, the red solid lines are the fundamental frequen-
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cies for the object at the point χ2
min in Fig. 2. M/M� = 5.40,

a/M = 0.279, and g/M = 0.23 for the Bardeen case (B1)
and M/M� = 5.42, a/M = 0.274, and ε3 = 0.5 for the
Johannsen–Psaltis metric (JP1). The blue dashed lines are
instead the frequencies of an object on the 68.3 % C.L. curve
in Fig. 2. For the Bardeen solution (B2), the parameters are
M/M� = 5.95, a/M = 0.243, and g/M = 0.56, and they
belong to the object with maximum value of g/M at 68.3 %
C.L. For the Johannsen–Psaltis metric (JP2), the parameters
are M/M� = 4.84, a/M = 0.339, and ε3 = −2.2, and they
are associated to the BH with a lowest possible value of ε3

allowed at 68.3 % C.L. As shown in Fig. 4, the values of νφ

and νn for different objects are similar even at larger radii,
while the periastron precession frequency νp seems to be
more sensitive to the background metric. Very precise mea-
surements of these frequencies at small and large radii may
thus be a very powerful tool to distinguish Kerr BHs from
other BH solutions.

5 Summary and conclusions

Astrophysical BH candidates are thought to be the Kerr BHs
predicted in general relativity because they are so massive,
compact, and dark that they cannot be explained otherwise
without introducing new physics. Nevertheless, there are not
yet observations capable of confirming this hypothesis. The
properties of the electromagnetic radiation emitted by the gas
in the inner part of the accretion disk can potentially provide
information on the spacetime geometry around these com-
pact objects and thus either confirm the predictions of general
relativity or demand new physics. At present, there are two
relatively robust techniques to probe the metric of BH can-
didates; that is, the study of the disk’s thermal spectrum and
the analysis of the profile of the Kα iron line. However, these
techniques can usually constrain only a certain combination
of the spin parameter and of possible deviations from the
Kerr solution, because a non-Kerr object with a certain spin
can likely mimic a Kerr BH with different spin.

In the present paper, I have reconsidered the interpreta-
tion of the three QPOs simultaneously detected in the X-
ray data of GRO J1655-40 proposed in Ref. [50] to test the
Kerr nature of the stellar-mass BH candidate in this source.
In the Kerr background, the fundamental frequencies asso-
ciated to the motion of a test particle depend only on the
orbital radius r , the BH mass M , and the spin parameter
a. Since three QPOs are observed at the same time, one
can argued that they may be generated at the same orbital
radius and thus solve the system of three equations for the
three fundamental frequencies to find the three variable, r ,
M , and a. The measurement of the mass M found with this
approach is consistent with the one inferred by studying the
orbital motion of the companion star with optical observa-

tions found in [51], but with a smaller uncertainty. However,
in the literature there is also a different measurement reported
in [52] and that would be inconsistent with the mass value
inferred in [50]. The relativistic precession model provides
also an estimate of the BH spin with quite high precision, but
it turns out to be in disagreement with the value found from
the analysis of the disk’s thermal spectrum and of the iron line
profile.

The relativistic precession interpretation of the QPOs can
potentially be a quite powerful tool to test the nature of astro-
physical BH candidates. In this case, one has to use the mass
M inferred from the optical data as an independent measure-
ment and thus solve the system of three equations for the
fundamental frequencies of the spacetime to find the orbital
radius r , the spin parameter a, and constrain possible devi-
ations from the Kerr background through the determination
of the deformation parameter under consideration. The data
of GRO J1655-40 may be consistent with a Kerr BH, but
they also allow for significant deviations from the Kerr solu-
tion. With the mass measurement of [51], the disagreement
between the results of the relativistic precession interpre-
tation and the measurement obtained with the continuum-
fitting method persists even relaxing the Kerr BH assumption,
and for any choice of the deformation parameter. With the
mass measurement of Ref. [52], the relativistic precession
model and the continuum-fitting method can be consistent
in the Johannsen–Psaltis background with non-vanishing ε3

The required deformation is ε3 ∼ 7. It is worth noting that
the same value was found in [31] by combining the measure-
ments of the continuum-fitting method and of the power of
steady jets.
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