29,252 research outputs found

    Sculplexity: Sculptures of Complexity using 3D printing

    Full text link
    We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.Comment: Free access to article on European Physics Letter

    Road lighting and accidents: Why lighting is not the only answer.

    Get PDF

    Arts and creative activities for mental wellbeing during Covid-19 lockdown: report of a survey of university staff

    Get PDF
    Purpose There is evidence that the recent Covid-19 pandemic has led to an increase in stress in the UK workforce. Research also suggests that engaging in arts and creative activities may alleviate stress. The purpose was to explore how this might relate to staff at Canterbury Christ Church University, and specifically 1) to identify the overall extent of uptake and popularity of different arts activities; 2) to assess how this compares with pre-Covid levels of engagement and; 3) to identify how engagement with activities may serve to mitigate any adverse effects of the pandemic and beyond. Design The two-stage design comprised an online questionnaire, followed by in-depth interviews with a sub-sample of respondents. Findings 178 individuals responded to the questionnaire, and 12 individuals were interviewed. Receptive arts engagement featured more frequently than participatory arts. 46.6% respondents reported more engagement during lockdown than before. The most frequently reported benefits related to the ability to disengage from the negative concerns of lockdown. Interview data identified four themes: creativity for wellbeing; connecting and contributing; pandemic as opportunity; and reflecting the times. Originality Little previous research has been conducted on the impacts of the arts specifically on university staff during Covid, particularly research including non-academic staff

    Magnetization distribution and orbital moment in the non-Superconducting Chalcogenide Compound K0.8Fe1.6Se2

    Get PDF
    We have used polarized and unpolarized neutron diffraction to determine the spatial distribution of the magnetization density induced by a magnetic field of 9 T in the tetragonal phase of K0.8Fe1.6Se2. The maximum entropy reconstruction shows clearly that most of the magnetization is confined to the region around the iron atoms whereas there is no significant magnetization associated with either Se or K atoms. The distribution of magnetization around the Fe atom is slightly nonspherical with a shape which is extended along the [0 0 1] direction in the projection. Multipolar refinement results show that the electrons which give rise to the paramagnetic susceptibility are confined to the Fe atoms and their distribution suggests that they occupy 3d t2g-type orbitals with around 66% in those of xz/yz symmetry. Detail modeling of the magnetic form factor indicates the presence of an orbital moment to the total paramagnetic moment of Fe2+Comment: 7 pages, accepted for publication in Physical Review

    Integrating visual and tactile information in the perirhinal cortex

    Get PDF
    By virtue of its widespread afferent projections, perirhinal cortex is thought to bind polymodal information into abstract object-level representations. Consistent with this proposal, deficits in cross-modal integration have been reported after perirhinal lesions in nonhuman primates. It is therefore surprising that imaging studies of humans have not observed perirhinal activation during visual–tactile object matching. Critically, however, these studies did not differentiate between congruent and incongruent trials. This is important because successful integration can only occur when polymodal information indicates a single object (congruent) rather than different objects (incongruent). We scanned neurologically intact individuals using functional magnetic resonance imaging (fMRI) while they matched shapes. We found higher perirhinal activation bilaterally for cross-modal (visual–tactile) than unimodal (visual–visual or tactile–tactile) matching, but only when visual and tactile attributes were congruent. Our results demonstrate that the human perirhinal cortex is involved in cross-modal, visual–tactile, integration and, thus, indicate a functional homology between human and monkey perirhinal cortices

    Magnetic structure of the Eu2+ moments in superconducting EuFe2(As1-xPx)2 with x = 0.19

    Get PDF
    The magnetic structure of the Eu2+ moments in the superconducting EuFe2(As1-xPx)2 sample with x = 0.19 has been determined using neutron scattering. We conclude that the Eu2+ moments are aligned along the c direction below T_C = 19.0(1) K with an ordered moment of 6.6(2) mu_B in the superconducting state. An impurity phase similar to the underdoped phase exists within the bulk sample which orders antiferromagnetically below T_N = 17.0(2) K. We found no indication of iron magnetic order, nor any incommensurate magnetic order of the Eu2+ moments in the sample.Comment: Accepted for publication in Phys. Rev. B (regular article

    Tidal interaction in binary black hole inspiral

    Get PDF
    In rotating viscous fluid stars, tidal torque leads to an exchange of spin and orbital angular momentum. The horizon of a black hole has an effective viscosity that is large compared to that of stellar fluids, and an effective tidal torque may lead to important effects in the strong field interaction at the endpoint of the inspiral of two rapidly rotating holes. In the most interesting case both holes are maximally rotating and all angular momenta (orbital and spins) are aligned. We point out here that in such a case (i) the transfer of angular momentum may have an important effect in modifying the gravitational wave ``chirp'' at the endpoint of inspiral. (ii) The tidal transfer of spin energy to orbital energy may increase the amount of energy being radiated. (iii) Tidal transfer in such systems may provide a mechanism for shedding excess angular momentum. We argue that numerical relativity, the only tool for determining the importance of tidal torque, should be more specifically focused on binary configurations with aligned, large, angular momenta.Comment: 5 pages, 2 figure
    corecore