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Magnetization distribution and orbital moment in the nonsuperconducting
chalcogenide compound K0.8Fe1.6Se2
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2Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1,
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We have used polarized and unpolarized neutron diffraction to determine the spatial distribution of the
magnetization density induced by a magnetic field of 9 T in the tetragonal phase of K0.8Fe1.6Se2. The maximum
entropy reconstruction shows clearly that most of the magnetization is confined to the region around the iron
atoms whereas there is no significant magnetization associated with either Se or K atoms. The distribution
of magnetization around the Fe atom is slightly nonspherical with a shape which is extended along the
〈0 0 1〉 direction in the projection. Multipolar refinement results show that the electrons which give rise to
the paramagnetic susceptibility are confined to the Fe atoms and their distribution suggests that they occupy
3d t2g-type orbitals with around 66% in those of xz/yz symmetry. Detail modeling of the magnetic form factor
indicates the presence of an orbital moment to the total paramagnetic moment of Fe2+.
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I. INTRODUCTION

The discovery of iron-based superconductors1 a few years
ago has stimulated tremendous research interests worldwide
in unconventional high-TC superconductivity. The new excite-
ment in this field has been generated very recently due to the
discovery of the new superconducting compound KxFe2−ySe2

with superconducting transition temperature TC above 30 K.2

Isostructural AxFe2−ySe2 compounds (A = Rb, Cs, and Tl3–5)
with similar TC have been found soon after. One of the
fascinating properties of the KxFe2−ySe2 superconductors, in
contrast to the previously discovered pnictide or chalcogenide
superconductors, is the absence of the hole Fermi surface
at the Brillouin zone center or the presence of electronic
Fermi surface at the zone center.3,6–8 This poses a serious
challenge to the well accepted theories of the prevailing
s± pairing symmetry driven by the interband scattering as
suggested in many weak coupling theories.9 Another unusual
feature of the KxFe2−ySe2 superconductors is the presence of
an antiferromagnetic order with a large moment (∼3.3 μB)
and very high transition temperature (∼600 K)10 which is
in contrast to the parent compound of the pnictide super-
conductors where Fe moments order antiferromagnetically
at considerably lower temperature (∼150 K) and with the
small ordered magnetic moment (∼0.5–0.8 μB).11,12 Initially
it was suggested that the superconductivity and antiferromag-
netism coexist and compete within the same phase of the
KxFe2−ySe2.10 However, subsequent detailed investigations
concluded a phase separation between the vacancy ordered
antiferromagnetic phase and a superconducting phase. Based
on the observation of the

√
5 × √

5 superlattice in the vacancy
ordered antiferromagnetic phase, optimal composition of
A2Fe4Se5 has been suggested for the parent phase.10,13 The
nature of the superconducting phase is still not settled. Both
a vacancy free phase with composition KFe2Se2

14–17 and a

phase A2Fe7Se8
17 with Fe vacancies have been found and were

assigned to the superconducting phase.
Orbital composition of Fermi surface is very important

regarding the pairing mechanism and pairing strength for the
Fe-based superconductors. It has been shown theoretically that
the strong interorbital interaction is very efficient to achieve su-
perconductivity due to magnetic fluctuations in iron pnictides
owing to the distinct orbital character of the Fermi surface.18

Besides the superconducting properties, physical properties
of the Fe-based superconductors are also strongly dependent
on the orbital character and occupancies of the Fe d or-
bitals. Indeed, for the superconducting KxFe2−ySe2 (x ∼ 0.76,
y ∼ 0.22) compounds, a crossover from a low temperature
metallic state to an orbital selective Mott phase at high temper-
ature has been observed using angle-resolved photoemission
spectroscopy (ARPES) measurements.19 ARPES measure-
ments clearly show that the spectral weight of the Fe dxy orbital
near the Fermi surface is diminished at high temperature while
the dxz/dyz orbitals remain metallic. In order to obtain direct
information about the electronic states near the Fermi surface
we have undertaken magnetization distribution study of the
nonsuperconducting compound K0.8Fe1.6Se2 using polarized
neutron diffraction.

II. EXPERIMENTAL DETAILS

A good quality single crystal with approximate mass of
300 mg was grown by the Bridgman method.20 The struc-
tural parameters were determined from unpolarized neutron
diffraction measurement using the four-circle diffractometer
D9 equipped with a Cu (2 2 0) monochromator to produce a
monochromatic neutron beam of 0.838 Å. The flipping ratios
were measured using the polarized neutron diffractometer D3
with neutron wavelength of 0.825 Å obtained with a Heusler
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alloy monochromator with polarization of the incident neutron
beam P0 = 0.907(5). Both these instruments are installed
on the hot neutron source of the high-flux reactor of the
Institute Laue-Langevin in Grenoble. The sample was held
at constant temperature in a closed-cycle refrigerator on D9
whereas on D3 it was oriented with a 〈1 1 0〉 axis parallel
to the vertical field direction of a 9 T cryomagnet. The
crystallographic notations used here and in the rest of the paper
are according to the high temperature tetragonal phase with the
I4/mmm symmetry. The flipping ratios from the K0.8Fe1.6Se2

crystal were measured in the paramagnetic tetragonal phase
at T = 600 K. In a flipping ratio measurement, one measures
the ratio R = I+

I− , where I+ and I− are the scattered neutron
intensities with neutron polarizations parallel and antiparallel
to the applied magnetic field directions, respectively. Because
the induced moment is small in K0.8Fe1.6Se2, in the limit
(γ r0/2μB )FM (Q)/FN (Q) � 1, the flipping ratio R can be
expressed as21

R ≈ 1 − 2γ r0

μB

FM (Q)

FN (Q)
, (1)

where γ r0 = 5.36 × 10−15 m and μB is the Bohr magneton.
FM (Q) and FN (Q) are the nuclear and the magnetic structure
factors at the reciprocal lattice vector Q. Since FN (Q) and
R are known from the unpolarized and polarized neutron
diffractions, respectively, FM (Q) can be calculated.

III. EXPERIMENTAL RESULTS

A. Macroscopic characterizations

Figure 1(a) shows magnetic susceptibility of a single
crystal of K0.8Fe1.6Se2 measured using a Quantum Design
vibrating sample magnetometer (VSM). For the magnetization
measurements a sample from the same batch as the diffraction
measurements was used. Magnetic susceptibility shows a clear
kink at 572 ± 2 K, indicating a phase transition from the high
temperature vacancy disordered phase to the low temperature
vacancy ordered phase. Inset to Fig. 1(a) shows M-H measured
at T = 600 K. The linear behavior of the M-H curve confirms
the paramagnetic nature of the sample at this temperature. The
magnetization induced by a field of 9 T applied along the
〈1 1 0〉 direction at 600 K was measured as 0.101(2) μB/f.u.22

after subtracting the very small ferromagnetic contribution of
0.003(2) μB/f.u. due to impurities (probably pure Fe).23 It
is the sum of a paramagnetic part due to magnetic excitation
of electrons near the Fermi surface and a diamagnetic part
to which all electrons contribute. The diamagnetic volume
susceptibility is given by the Langevin equation,

χdia = −(e2/6V mc2)
∑

i

Zi〈r2〉i . (2)

The sum is over all the atoms in the unit cell of volume V,
〈r2〉i is the mean-square radius of the ith atom’s electron wave
function, and Zi denotes atomic number. The diamagnetic con-
tribution to the magnetization calculated using Eq. (2) equals to
−0.014 μB/f.u., the paramagnetic part of the magnetization
therefore equals to 0.101(2) − (−0.014) = 0.115(2) μB/f.u.
which is indicated by the diamond symbol in Fig. 2.24

FIG. 1. (Color online) (a) Temperature dependence of the mag-
netic susceptibility measured on heating of the sample in a field of
1 T. Inset shows M-H curve for the same sample at T = 600 K, above
the magnetic ordering transition temperature of Fe. (b) Temperature
dependence of the nuclear ( 3

5
1
5 0) and magnetic ( 2

5
1
5 1) reflections,

signaling the onset of structural and magnetic phase transitions at
T = 580 and 553 K, respectively.

B. Unpolarized neutron diffraction

In order to characterize the structural and magnetic phase
transitions, we have measured the temperature dependence
of the nuclear ( 3

5
1
5 0) and magnetic ( 2

5
1
5 1) superstructure

peaks at a vertical magnetic field of 9 T oriented along
the 〈1 1 0〉 direction as shown in Fig. 1(b). The rapid increase
of the intensity of the nuclear ( 3

5
1
5 0) peak below TS =

580(3) K indicates the structural phase transition from the
high-temperature Fe-vacancy-disordered phase with I4/mmm
symmetry into the low-temperature Fe-vacancy ordered phase
with I4/m symmetry. The transition temperature is broadly
consistent with that determined from magnetic susceptibility
measurement. The intensity of the magnetic peak ( 2

5
1
5 1)

vanishes above the antiferromagnetic ordering temperature,
TN = 553(3) K, of the Fe moments. All the measurements
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FIG. 2. (Color online) Paramagnetic scattering amplitudes of
Fe at T = 600 K. The large-dashed curve (blue) shows fitting
using the 〈j0〉 form factor for Fe2+, Ref. 27. The solid (red)
curve shows fitting with 〈j0〉 and 〈j2〉 form factors with individual
contributions are indicated by short-dashed (black) and dotted (red)
lines, respectively.28 A and B are fitting parameters.

for the determination of magnetization distribution were
performed at T = 600 K which is well above both the
structural and magnetic phase transitions. Sets of experimental
structure factors containing 80 independent reflections within
sinθ/λ � 0.80 Å−1 were obtained from the integrated inten-
sities measured on D9 after averaging the intensities over
equivalent reflections with a weighted RwF 2

25 factor of 4%.
These data were used in least-squares refinements of the crystal
structure using FullProf26 in which the variable parameters
were the z coordinate of Se, the anisotropic temperature factors
for the three sites, a single extinction parameter g representing
the mosaic spread of the crystal and the site occupancies of the
K and Se. The results are summarized in Table I. The small
value obtained for g, which is less than its estimated error,
shows that any extinction, if present, is very small. The results

are consistent with the neutron powder diffraction results of
Bao et al. on a similar chemical composition.10

C. Polarized neutron diffraction studies

The flipping ratios were measured at an applied magnetic
field of 9 T at 600 K at D3. Since the susceptibility of
K0.8Fe1.6Se2 is small (∼0.1 μB/f.u.) all the flipping ratios
R are close to unity. Therefore, every reflection was measured
for more than one hour to have reasonable counting statistics.
The flipping ratios measured for equivalent reflections and
for repeated measurements of the same reflection were
averaged together to give a mean value of R, which was
used to calculate the magnetic structure factors FM (Q) using
Cambridge Crystallographic Subroutine Library (CCSL).29

Both the observed flipping ratios and the calculated FM (Q)
are listed in Table II. The nuclear structure factor FN (Q) was
calculated using the parameters obtained from the integrated
intensity measurements which are given in Table I.

The diamagnetic contribution to the magnetic structure
factor in an applied magnetic field B is

Fdia = BC

|Q|
∑

i

dfi(Q)

dQ
exp(iQ · ri), (3)

where fi(Q) is the atomic form factor of the ith atom and ri

its position in the unit cell.30 The constant C has the value
1.52 × 10−5 μBT−1 Å2.31 The diamagnetic contributions to
the magnetic structure factors were calculated using Eq. (3)
and are given in Table II. The values F dia were subtracted from
the magnetic structure factors FM to obtain the paramagnetic
structure factors F para which are also listed in Table II. The
geometric structure factor of Fe atoms for the (h k l) reflections
can be written as

Fgeo = 2 cos(πl/2)(eiπh + eiπk), (4)

which is either + 4 or −4 depending on the values of h, k,
l assuming full occupancy of the Fe site. In Fig. 2, we show
the effective paramagnetic scattering amplitude, obtained by
dividing each F para by Fgeo × T (h k l) and multiplied by the
number of Fe atoms in the unit cell. It can be seen that most of
the paramagnetic scattering amplitude lies reasonably close to
the theoretical spherical form factor 〈j0〉 of Fe2+.28 This result

TABLE I. Parameters obtained in least-squares refinements of integrated intensities measured at T = 600 K on D9.

Position in I4/mmm

Atom site x y z β11 = β22 β33 β12,β13,β23 n

K 2a 0 0 0 0.13(2) 0.010(1) 0 0.82(4)
Fe 4d 1

2 0 1
4 0.056(2) 0.0059(3) 0 0.81(1)

Se 4e 0 0 0.3532(2) 0.060(3) 0.0052(3) 0 1

Extinction g (rad−1) = 2 ± 2, RF 2 , RwF 2 , RF , χ 2: 6.8, 7.3, 6.2, 3.0
a = 3.945(2) Å, c = 14.163(4) Å

Definitions: Thermal factor T (h k l) = exp{−(β11h
2 + β22k

2 + β33l
2 + 2β12hk + 2β13hl + 2β23kl)}

RF 2 = 100
∑

n[|G2
obs,n−∑

k G2
calc,k |]∑

n G2
obs,n

, RwF 2 = 100

√∑
n wn(G2

obs,n−∑
k G2

calc,k )2∑
n wnG4

obs,n
, RF = 100

∑
n[|Gobs,n−

√∑
k G2

calc,k |]∑
n Gobs,n

,

where the index n runs over the observations and the index k runs over the reflections contributing to the observation n.
G2 is the square of the structure factor. wn = 1/σ 2

n is the weight where σ 2
n is the variance of Gobs,n.
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TABLE II. Observed and calculated magnetic structure factors for the K0.8Fe1.6Se2 at 600 K and at B = 9 T.

FM Fdia Fpara Fcalc
a

h k l sinθ/λ Å−1 (1 − R) × 103 m μB/f.u. m μB/f.u. m μB/f.u. m μB/f.u.

0 0 2 0.0706 26.8 ± 0.3 −92.9 ± 1.2 1.13 −94.0 ± 1.2 −94.0
0 0 4 0.1412 97.9 ± 2.2 74.9 ± 1.6 −0.02 74.9 ± 1.6 77.0
1 1 0 0.1791 −101.8 ± 2.9 −61.1 ± 1.8 −0.46 −60.6 ± 1.8 −69.0
1 1 2 0.1925 28.6 ± 0.5 69.3 ± 1.1 −0.42 69.8 ± 1.1 66.0
1 1 4 0.2281 12.5 ± 0.6 −56.6 ± 2.6 0.61 −57.2 ± 2.6 −55.0
2 0 2 0.2630 10.3 ± 0.9 −53.1 ± 4.4 0.27 −53.4 ± 4.4 −45.0
1 1 6 0.2774 9.8 ± 0.5 43.2 ± 2.4 −0.53 43.8 ± 2.4 42.0
0 0 8 0.2824 10.2 ± 0.6 36.6 ± 2.3 −0.43 37.4 ± 2.3 37.0
2 0 4 0.2900 47.5 ± 7.8 42.6 ± 7.7 −0.04 42.6 ± 7.7 39.0
1 1 8 0.3345 49.4 ± 7.8 −33.9 ± 5.2 0.03 −33.9 ± 5.2 −29.0
0 0 10 0.3531 6.5 ± 0.8 −22.3 ± 2.6 0.28 −22.6 ± 2.6 −22.0
2 2 0 0.3583 5.0 ± 0.8 21.6 ± 3.3 −0.32 21.9 ± 3.3 27.0
2 2 2 0.3651 12.0 ± 2.1 −27.2 ± 4.7 0.14 −27.3 ± 4.7 −26.0
2 0 8 0.3794 5.0 ± 1.1 17.6 ± 3.7 −0.20 17.8 ± 3.7 22.0
2 2 4 0.3851 45.9 ± 13.6 18.7 ± 5.4 −0.01 18.7 ± 5.4 23.0
3 1 2 0.4067 12.8 ± 3.3 22.7 ± 5.9 −0.07 22.8 ± 5.9 18.0
0 0 12 0.4237 9.6 ± 2.3 14.9 ± 3.7 −0.10 15.0 ± 3.7 11.0
3 1 4 0.4247 3.9 ± 1.3 −13.6 ± 4.4 0.16 −13.8 ± 4.4 −16.0
2 0 10 0.4345 5.1 ± 1.2 −16.7 ± 3.8 0.16 −16.9 ± 3.8 −14.0
3 1 6 0.4531 2.6 ± 1.3 8.1 ± 4.0 −0.13 8.2 ± 4.0 14.0
2 2 8 0.4562 4.6 ± 1.5 9.9 ± 3.1 −0.11 10.0 ± 3.1 14.0
1 1 12 0.4600 8.1 ± 2.8 −8.0 ± 2.8 0.05 −8.1 ± 2.8 −13.0
3 1 8 0.4901 12.5 ± 21.7 −7.5 ± 13.0 0.01 −7.5 ± 13.0 −10.0
2 0 12 0.4936 7.0 ± 6.5 9.9 ± 8.6 −0.05 10.0 ± 8.6 8.0
2 2 10 0.5030 3.6 ± 1.1 −7.8 ± 2.5 0.10 −7.9 ± 2.5 −10.0
1 1 14 0.5257 3.3 ± 1.2 6.3 ± 2.2 −0.08 6.4 ± 2.2 5.0
3 3 2 0.5420 6.0 ± 3.1 5.3 ± 2.7 −0.02 5.3 ± 2.7 8.0
2 2 12 0.5548 4.5 ± 3.1 4.3 ± 2.9 −0.03 4.3 ± 2.9 6.0
3 3 4 0.5556 3.2 ± 1.9 −6.0 ± 3.6 0.06 −6.0 ± 3.6 −7.0

aUsing a constrained multipole model with an orbital moment.

signifies that most of the paramagnetic scattering amplitude is
associated with the Fe2+ moments.

To have a model free reconstruction of magnetization
density, we have used the maximum entropy method using
MEMSYS III subroutine library.32 This method has been
shown to give more reliable results from sparse and noisy data
compared to conventional Fourier analysis.33 We have used
this method to clarify the shape of the distribution. Figure 3
shows maximum entropy reconstruction of the magnetization
distribution projected down to the [1 1 0] plane using the
measured magnetic structure factors for the [H H L] type of
reflections. The reconstruction shows clearly that the majority
of magnetization is confined to the region around the iron
atoms. However, a very small magnetization (�0.01 μB Å−2)
can be seen around the Se atoms signifying a possible
hybridization between the Fe and Se. The magnetization
around the Fe atom is slightly nonspherical with a shape that
appears to extend in the 〈0 0 1〉 direction of the projection.

Further analysis of the measured paramagnetic scattering
amplitude was obtained by fitting the magnetic structure
factors to a multipole model in which they are expressed as

FM (Q) = a0 〈j0 |Q|〉Y (00) + μL 〈j2 |Q|〉

+
∑
l=2,4

〈jl |Q|〉
m=l∑

m=−l

almYQ̂(lm±), (5)

where a0 = μs + μl is the total magnetic moment of Fe. μs

and μl are the spin and orbital contributions, respectively.
〈jl |Q|〉 are the form factor for a Fe2+ and Y Q̂(lm±) are the
real combinations of spherical harmonic functions written as

YQ̂(lm±) = 1√
2

[
Y−m

l (Q̂) ± (−1)mYm
l (Q̂)

]
. (6)

The point group symmetry of Fe site 4m2 limits the nonzero
coefficients alm to a20, a40 and a44. Different models have been
considered for fitting the paramagnetic scattering amplitude in
Fig. 2, namely, (a) a dipole model with only the first two
terms in Eq. (5), and (b) a multipole model when all the
terms in Eq. (5) are retained. Both the dipole and multipole
models have been considered with and without the orbital
moment. The results of different fitting models have been
summarized in Table III. It can be easily seen that the inclusion
of the orbital part increases the quality of fit in both the low
and high Q regions of the form factor and the agreement
factors significantly. The obtained ratio of μl

μs
≈ 0.88 signifies

dominant contribution of the orbital moment to the total
paramagnetic scattering amplitude of Fe2+.

In a site with fourfold symmetry the d orbitals split into
the singlet states: d3z2−r2 , dx2−y2 , and dxy and a doublet
combination of dxz and dyz. The first two singlet states are

184413-4



MAGNETIZATION DISTRIBUTION AND ORBITAL MOMENT . . . PHYSICAL REVIEW B 88, 184413 (2013)

FIG. 3. (Color online) Maximum-entropy reconstruction of the
magnetization distribution in tetragonal K0.8Fe1.6Se2 at 600 K
projected down to [1 1 0].

derived from the cubic eg functions and the third singlet
and the doublet from the t2g ones. The occupancies of these
four nondegenerate orbitals can be derived directly from the
coefficients alm.34 However, the parameters obtained from the
unconstrained fit lead to unphysical, negative occupancies
for the dxy orbital with large estimated standard deviations
for all the orbitals as can be seen from Table IV. Band
structure calculations as well as photoemission spectroscopy
measurements indicate that the t2g orbitals dominate at the
Fermi surface.6,7,19,35 Therefore, a constrained fit34 in which

TABLE III. Fitting results of the measured form factors with
different models as described in the texet and the corresponding
agreement factors.

(μs + μl)〈j0〉 μl〈j2〉
Model in μB/Fe in μB/Fe χ 2 Rw

dipole 0.0320(5) 0 3.3 12.6%
0.0306(4) 0.014(4) 2.0 7.9%

multipolea 0.0319(4) 0 3.4 12.5%
0.0306(4) 0.014(4) 2.2 7.7%

Rw = 100
∑

n wn|F 2
obs,n−F 2

calc,n|∑
n wnF 2

obs,n
. wn = 1/σ 2

n is

the weight where σ 2
n is the variance of Fobs,n

aMultipole parameters constrained to give only t2g type orbitals.

TABLE IV. Multipole amplitudes and 3dorbital occupancies
determined from the signed magnetic structure factors using CCSL.

Amplitudes (in μB/Fe)
Function coefficient all da t2g onlyb

Y(00) a0 0.0306(5) 0.0306(4)
Y(20) a20 0.04(10) −0.03(9)
Y(40) a40 −0.20(40) −0.39(6)
Y(44 + ) a44 0.48(58) −0.37(7)

μL 0.017(4) 0.014(4)
χ 2 2.2 2.2

Occupancies (%)

orbital all da t2gonlyb

3z2 − r2 12(24) 0
x2 − y2 40(35) 0
xy −6(35) 34(7)
xz, yz 54(30) 66(7)

aAll multipole parameters allowed by the 4m2 point group symmetry.
bMultipole parameters constrained to give only t2g type orbitals.

the ratio between the alm was fixed to correspond to occupancy
of the t2g-type orbitals only gave equally good agreement factor
as well as less standard deviation of the fitted parameters
as shown in Table IV. The refinement shows that ∼66% of
the electrons occupy doubly degenerate dxz/dyz orbitals and
∼34% of those are in the dxy orbital. The magnetic structure
factors calculated for this constrained multipole model are
given together with the measured values and the diamagnetic
corrections in Table II.

There have been a few reports of magnetization distribution
for the superconducting and nonsuperconducting Fe based
compounds.21,34,36–38 Of particular interest are the results of
BaFe2As2 by Brown et al.34 who have shown that most
of the magnetization is associated with the Fe atoms and
the distribution is nonspherical with an extension along the
〈1 1 1〉 direction. For the superconducting Ba(Fe1−xCox)2As2

samples both Prokeš et al.36 and Lester et al.21 have concluded
that the magnetization is rather extended along the 〈1 1 0〉
direction. The change in distribution between the doped and
undoped samples is due to the doping induced modifications
of the relevant bands near the Fermi surface as suggested
by Lester et al.21 In contrast to all of the investigated Fe
pnictides, K0.8Fe1.6Se2 shows distribution elongated along the
〈0 0 1〉 direction. The results of the present experiment show
that at least 96% of the electrons in K0.8Fe1.6Se2, which give
rise to the paramagnetic susceptibility, are localized on the
Fe atoms with a radial distribution similar to that of a Fe2+.
Their angular distribution shows that they occupy the t2g-type
orbitals with a strong preference for the doubly degenerate
xz/yz type which is in agreement with the slight elongation
observed along the 〈0 0 1〉 direction for the maximum entropy
map in Fig. 3. For the BaFe2As2, the xy (∼52%) orbitals
are more occupied than the xz/yz (∼48%) orbitals which
is opposite to the results for the K0.8Fe1.6Se2 as shown in
Table IV. This difference in occupancy for the t2g orbitals
and the corresponding magnetization distribution in different
compounds might be due to the subtle interplay between the
crystal field effects and Hund’s rule coupling.39
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The most surprising result of the present study is the
presence of an orbital moment to the total paramagnetic
moment of K0.8Fe1.6Se2. Previous studies also hinted at the
existence of orbital moment.21,36 For the superconducting
Ba(Fe1−xCox)2As2 samples, Lester et al.21 have found that at
least 2

3 of the normal state susceptibility does not vanish at the
lowest achievable temperature of 2 K. They have attributed
the remaining susceptibility to the orbital contribution of Van
Vleck type or due to the presence of residual quasiparticle
density of states at the Fermi surface. Our very accurate
form factor measurement allows us to quantify the orbital
contribution relative to the spin contribution. The observed
form factor of Fe2+ is best fitted using ∼46% orbital and
∼54% spin contributions to the total magnetization. The
amount of orbital contribution is unusually high keeping
in mind that the orbital moment is generally quenched in a
3d-orbital system due to the crystal field effects. Nevertheless,
similarly large orbital contribution has been found for the
vanadium d electrons in classical s-wave superconductor V3Si
using polarized neutrons.40 For the Fe-based superconductors,
band structure calculations also predicted that the orbital
contribution is larger than the spin contribution.41 Our results
show non-negligible orbital contribution to the total param-
agnetic susceptibility of K0.8Fe1.6Se2. Strongly anisotropic
and weakly temperature dependent magnetic susceptibility
observed in the AxFe2−ySe2 (A = K, Rb, Cs) systems42,43

might be related to the presence of large orbital contribution
since the spin contribution is strongly temperature dependent.

IV. CONCLUSION

In summary, we have determined magnetization distri-
bution in K0.8Fe1.6Se2 using polarized neutron diffraction.
Magnetic structure factors derived from the polarization de-
pendence of the intensities of the Bragg reflections were used
to make a maximum-entropy reconstruction of the distribution
projected on the [1 1 0] plane. The reconstruction shows clearly
that the magnetization is confined to the region around the
iron atoms. A very small magnetization around the Se atoms
hints towards a possible hybridization between the Fe and
Se. The distribution of magnetization around the Fe atom is
slightly nonspherical with a shape which is extended in the
〈0 0 1〉 direction in the projection. These results show that the
electrons which give rise to the paramagnetic susceptibility
are confined to the Fe atoms, and their distribution suggests
that they occupy 3d t2g-type orbitals with 66% in those
of xz/yz symmetry. Orbital moment contributes significantly
to the total paramagnetic moment of Fe and might be
responsible for the anisotropic properties of the Fe-based
superconductors.
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