630 research outputs found

    Multi Sector Planning Tools for Trajectory-Based Operations

    Get PDF
    This paper discusses a suite of multi sector planning tools for trajectory-based operations that were developed and evaluated in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The toolset included tools for traffic load and complexity assessment as well as trajectory planning and coordination. The situation assessment tools included an integrated suite of interactive traffic displays, load tables, load graphs, and dynamic aircraft filters. The planning toolset allowed for single and multi aircraft trajectory planning and data communication-based coordination of trajectories between operators. Also newly introduced was a real-time computation of sector complexity into the toolset that operators could use in lieu of aircraft count to better estimate and manage sector workload, especially in situations with convective weather. The tools were used during a joint NASA/FAA multi sector planner simulation in the AOL in 2009 that had multiple objectives with the assessment of the effectiveness of the tools being one of them. Current air traffic control operators who were experienced as area supervisors and traffic management coordinators used the tools throughout the simulation and provided their usefulness and usability ratings in post simulation questionnaires. This paper presents these subjective assessments as well as the actual usage data that was collected during the simulation. The toolset was rated very useful and usable overall. Many elements received high scores by the operators and were used frequently and successfully. Other functions were not used at all, but various requests for new functions and capabilities were received that could be added to the toolset

    Environmental assessment of humic acid coated magnetic materials used as catalyst in photo-fenton processes

    Get PDF
    Persistent organic pollutants have been increasingly detected in natural waters, and this represents a real challenge to the quality of this resource. To remove these species, advanced treatment technologies are required. Among these technologies, Fenton-like and photo-Fenton-like processes have been investigated for the removal of pollutants from water. Delicate aspects of photo-Fenton processes are that light-driven processes are energy intensive and require a fair amount of chemical inputs, which strongly affects their overall environmental burdens. At present, aside from determining the efficiency of the processes to remove pollutants of a particular technology, it becomes fundamental to assess also the environmental sustainability of the overall process. In this work, the methodology of the life cycle assessment (LCA) was applied to identify the hotspots of using magnetite particles covered with humic acid (Fe3O4/HA) as a heterogeneous photo-Fenton catalyst for water remediation. The sustainability of the overall process was considered, and a comparative LCA study was performed between H2O2 and persulfate activation at different pH. The addition of humic substances to the particles allows the effectiveness of the catalyst to improve without increasing the environmental impacts; these processes are strongly correlated with energy consumption and therefore with the efficiency of the process. For this reason, working at acidic pH allows us to contain the impacts

    Effects of various meteorological conditions and spatial emissionresolutions on the ozone concentration and ROG/NO<sub>x</sub> limitationin the Milan area (I)

    Get PDF
    The three-dimensional photochemical model UAM-V is used to investigate the effects of various meteorological conditions and of the coarseness of emission inventories on the ozone concentration and ROG/NO<sub>x</sub> limitation of the ozone production in the Po Basin in the northern part of Italy. As a base case, the high ozone episode with up to 200ppb on 13 May 1998 was modelled and previously thoroughly evaluated with measurements gained during a large field experiment. Systematic variations in meteorology are applied to mixing height, air temperature, specific humidity and wind speed. Three coarser emission inventories are obtained by resampling from 3x3km<sup>2</sup> up to 54x54km<sup>2</sup> emission grids. The model results show that changes in meteorological input files strongly influence ozone in this area. For instance, temperature changes peak ozone by 10.1ppb/&degC and the ozone concentrations in Milan by 2.8ppb/&degC. The net ozone formation in northern Italy is more strongly temperature than humidity dependent, while the humidity is very important for the ROG/NO<sub>x</sub> limitation of the ozone production. For all meteorological changes (e.g. doubling the mixing height), the modelled peak ozone remains ROG limited. A strong change towards NO<sub>x</sub> sensitivity in the ROG limited areas is only found if much coarser emission inventories were applied. Increasing ROG limited areas with increasing wind speed are found, because the ROG limited ozone chemistry induced by point sources is spread over a larger area. Simulations without point sources tend to increase the NO<sub>x</sub> limited areas

    The UV Continuum of Quasars: Models and SDSS Spectral Slopes

    Full text link
    We measure long (2200-4000 ang) and short (1450-2200 ang) wavelength spectral slopes \alpha (F_\nu proportional to \nu^\alpha) for quasar spectra from the Sloan Digital Sky Survey. The long and short wavelength slopes are computed from 3646 and 2706 quasars with redshifts in the z=0.76-1.26 and z=1.67-2.07 ranges, respectively. We calculate mean slopes after binning the data by monochromatic luminosity at 2200 ang and virial mass estimates based on measurements of the MgII line width and 3000 ang continuum luminosity. We find little evidence for mass dependent variations in the mean slopes, but a significant luminosity dependent trend in the near UV spectral slopes is observed with larger (bluer) slopes at higher luminosities. The far UV slopes show no clear variation with luminosity and are generally lower (redder) than the near UV slopes at comparable luminosities, suggesting a slightly concave quasar continuum shape. We compare these results with Monte Carlo distributions of slopes computed from models of thin accretion disks, accounting for uncertainties in the mass estimates. The model slopes produce mass dependent trends which are larger than observed, though this conclusion is sensitive to the assumed uncertainties in the mass estimates. The model slopes are also generally bluer than observed, and we argue that reddening by dust intrinsic to the source or host galaxy may account for much of the discrepancy.Comment: To be published in ApJ, 18 pages, 10 figure

    Self-Lensing Models of the LMC

    Get PDF
    All of the proposed explanations for the microlensing events observed towards the LMC have difficulties. One of these proposed explanations, LMC self-lensing, which invokes ordinary LMC stars as the long sought-after lenses, has recently gained considerable popularity as a possible solution to the microlensing conundrum. In this paper, we carefully examine the set of LMC self-lensing models. In particular, we review the pertinent observations made of the LMC, and show how these observations place limits on such self-lensing models. We find that, given current observational constraints, no purely LMC disk models are capable of producing optical depths as large as that reported in the MACHO collaboration 2-year analysis. Besides pure disk, we also consider alternate geometries, and present a framework which encompasses the previous studies of LMC self-lensing. We discuss which model parameters need to be pushed in order for such models to succeed. For example, like previous workers, we find that an LMC halo geometry may be able to explain the observed events. However, since all known LMC tracer stellar populations exhibit disk-like kinematics, such models will have difficulty being reconciled with observations. For SMC self-lensing, we find predicted optical depths differing from previous results, but more than sufficient to explain all observed SMC microlensing. In contrast, for the LMC we find a self-lensing optical depth contribution between 0.47e-8 and 7.84e-8, with 2.44e-8 being the value for the set of LMC parameters most consistent with current observations.Comment: 20 pages, Latex, 14 figures, submitted to Ap

    Evidence for TP-AGB stars in high redshift galaxies, and their effect on deriving stellar population parameters

    Get PDF
    We explore the effects of stellar population models on estimating star formation histories, ages and masses of high redshift galaxies. The focus is on the Thermally-Pulsing Asymptotic Giant Branch (TP-AGB) phase of stellar evolution, whose treatment is a source of major discrepancy among different evolutionary population synthesis. In particular, besides the models usually adopted in the literature, we use models (by Maraston 2005), in which the contribution of the TP-AGB phase is observationally calibrated and is the dominant source of near-IR energy for stellar populations in the age range 0.2 to 2 Gyr. We use a sample of high-z galaxies in the HUDF, with spectroscopic redshifts, and Spitzer IRAC and MIPS photometry from GOODS. We find that the TP-AGB phase plays a key role in the interpretation of Spitzer data for high-z galaxies, when the rest-frame near-IR is sampled. When fitting without dust reddening, the models with the empirically-calibrated TP-AGB phase always reproduce better the observed spectral energy distributions (SEDs). Allowing for dust reddening improves the fits with literature models in some cases. In both cases, the results from Maraston models imply younger ages by factors up to 6 and lower stellar masses (by ~60 % on average). The observed strengths of the MgUV spectral feature compare better to the predicted ones in the case of the Maraston models, implying a better overall consistency of SED fitting. Finally, we find that photometric redshifts improve significantly using these models on the SEDs extending over the IRAC bands. This work provides the first direct evidence of TP-AGB stars in the primeval Universe.Comment: 14 pages, 10 figures, 3 tables, submitted to the Astrophysical Journa

    A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves

    Full text link
    We present an exhaustive, quantitative comparison of all of the known extinction curves in the Small and Large Magellanic Clouds (SMC and LMC) with our understanding of the general behavior of Milky Way extinction curves. The R_V dependent CCM relationship and the sample of extinction curves used to derive this relationship is used to describe the general behavior of Milky Way extinction curves. The ultraviolet portion of the SMC and LMC extinction curves are derived from archival IUE data, except for one new SMC extinction curve which was measured using HST/STIS observations. The optical extinction curves are derived from new (for the SMC) and literature UBVRI photometry (for the LMC). The near-infrared extinction curves are calculated mainly from 2MASS photometry supplemented with DENIS and new JHK photometry. For each extinction curve, we give R_V = A(V)/E(B-V) and N(HI) values which probe the same dust column as the extinction curve. We compare the properties of the SMC and LMC extinction curves with the CCM relationship three different ways: each curve by itself, the behavior of extinction at different wavelengths with R_V, and behavior of the extinction curve FM fit parameters with R_V. As has been found previously, we find that a small number of LMC extinction curves are consistent with the CCM relationship, but majority of the LMC and all of the SMC curves do not follow the CCM relationship. For the first time, we find that the CCM relationship seems to form a bound on the properties of all of the LMC and SMC extinction curves. This result strengthens the picture of dust extinction curves exhibit a continuum of properties between those found in the Milky Way and the SMC Bar. (abridged)Comment: 18 pages, 10 figures, ApJ in pres

    Large-Scale Gravitational Instability and Star Formation in the Large Magellanic Cloud

    Full text link
    Large-scale star formation in disk galaxies is hypothesized to be driven by global gravitational instability. The observed gas surface density is commonly used to compute the strength of gravitational instability, but according to this criterion star formation often appears to occur in gravitationally stable regions. One possible reason is that the stellar contribution to the instability has been neglected. We have examined the gravitational instability of the Large Magellanic Cloud (LMC) considering the gas alone, and considering the combination of collisional gas and collisionless stars. We compare the gravitationally unstable regions with the on-going star formation revealed by Spitzer observations of young stellar objects. Although only 62% of the massive young stellar object candidates are in regions where the gas alone is unstable, some 85% lie in regions unstable due to the combination of gas and stars. The combined stability analysis better describes where star formation occurs. In agreement with other observations and numerical models, a small fraction of the star formation occurs in regions with gravitational stability parameter Q > 1. We further measure the dependence of the star formation timescale on the strength of gravitational instability, and quantitatively compare it to the exponential dependence expected from numerical simulations.Comment: Accepted for publication in ApJ, 10 pages, 5 figure

    Exploratory Study of the X-Ray Properties of Quasars With Intrinsic Narrow Absorption Lines

    Get PDF
    We have used archival Chandra and XMM-Newton observations of quasars hosting intrinsic narrow UV absorption lines (intrinsic NALs) to carry out an exploratory survey of their X-ray properties. Our sample consists of three intrinsic-NAL quasars and one "mini-BAL" quasar, plus four quasars without intrinsic absorption lines for comparison. These were drawn in a systematic manner from an optical/UV-selected sample. The X-ray properties of intrinsic-NAL quasars are indistinguishable from those of "normal" quasars. We do not find any excess absorption in quasars with intrinsic NALs, with upper limits of a few times 10^22 cm^-2. We compare the X-ray and UV properties of our sample quasars by plotting the equivalent width and blueshift velocity of the intrinsic NALs and the X-ray spectral index against the "optical-to-X-ray" slope, alpha-ox. When BAL quasars and other AGNs with intrinsic NALs are included, the plots suggest that intrinsic-NAL quasars form an extension of the BAL sequences and tend to bridge the gap between BAL and "normal" quasars. Observations of larger samples of intrinsic-NAL quasars are needed to verify these conclusions. We also test two competing scenarios for the location of the NAL gas in an accretion-disk wind. Our results strongly support a location of the NAL gas at high latitudes above the disk, closer to the disk axis than the dense BAL wind. We detect excess X-ray absorption only in Q0014+8118, which does not host intrinsic NALs. The absorbing medium very likely corresponds to an intervening system at z=1.1, which also produces strong absorption lines in the rest-frame UV spectrum of this quasar. In the appendix we discuss the connection between UV and X-ray attenuation and its effect on alpha-ox.Comment: Accepted by the Astrophysical Journa

    The Development of a New Questionnaire to Measure the Burden of Immunoglobulin Treatment in Patients with Primary Immunodeficiencies: The IgBoT-35.

    Get PDF
    Purpose: To describe the development and psychometric testing of a new questionnaire to measure the burden of immunoglobulin treatment (Ig) from the perspective of patients with primary immunodeficiencies (PID). Patients and Methods: An online, cross-sectional survey was administered to PID patients across 10 countries (nine European and Canada) who were receiving either intravenous (IVIg) or subcutaneous (SCIg) immunoglobulin therapy. The range and distribution of the responses (ie, levels of missing data, floor and ceiling effects), exploratory factor analysis (using factor loadings of 0.4 or greater) and measures of internal consistency reliability (ie, Cronbach's alpha coefficient, inter-item and item-total correlations) were used to identify the domain and item pool. Results: In total, 472 patients completed the questionnaire, of which 395 were included in the analysis (32% underwent IVIg and 67% underwent SCIg). The final instrument contained 34 items across eight domains of treatment burden (time, organisation and planning, leisure and social, interpersonal relationships, employment and education, travel, consequences of treatment and emotional) and an additional Ig treatment burden global question at the end of the measure. All the scales achieved good internal reliability (Cronbach's alpha coefficient ranged from 0.70 to 0.85) and, with the exception of one item exceeded the minimum threshold of 0.35 for item-total correlations. Treatment burden was lower than anticipated across the different treatment routes and countries, although overall was more burdensome for patients undergoing IVIg compared to SCIg treatment. Conclusion: The IgBoT-35 appears to be a reliable, patient-generated questionnaire and may help to identify more individualised and preferred therapies for the PID patient when used in clinical practice. A new survey with a sample of US patients is currently being undertaken to further establish its validity and conceptual model. The overall Ig burden of treatment scores appeared to be low. PID patient preferences are important to guide treatment decisions and ensuring patients receive the right treatment at the right time
    • 

    corecore