research

A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves

Abstract

We present an exhaustive, quantitative comparison of all of the known extinction curves in the Small and Large Magellanic Clouds (SMC and LMC) with our understanding of the general behavior of Milky Way extinction curves. The R_V dependent CCM relationship and the sample of extinction curves used to derive this relationship is used to describe the general behavior of Milky Way extinction curves. The ultraviolet portion of the SMC and LMC extinction curves are derived from archival IUE data, except for one new SMC extinction curve which was measured using HST/STIS observations. The optical extinction curves are derived from new (for the SMC) and literature UBVRI photometry (for the LMC). The near-infrared extinction curves are calculated mainly from 2MASS photometry supplemented with DENIS and new JHK photometry. For each extinction curve, we give R_V = A(V)/E(B-V) and N(HI) values which probe the same dust column as the extinction curve. We compare the properties of the SMC and LMC extinction curves with the CCM relationship three different ways: each curve by itself, the behavior of extinction at different wavelengths with R_V, and behavior of the extinction curve FM fit parameters with R_V. As has been found previously, we find that a small number of LMC extinction curves are consistent with the CCM relationship, but majority of the LMC and all of the SMC curves do not follow the CCM relationship. For the first time, we find that the CCM relationship seems to form a bound on the properties of all of the LMC and SMC extinction curves. This result strengthens the picture of dust extinction curves exhibit a continuum of properties between those found in the Milky Way and the SMC Bar. (abridged)Comment: 18 pages, 10 figures, ApJ in pres

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019