62 research outputs found

    Temporomandibular joint arthroplasty for osteoarthrosis: a series of 24 patients that received a uni- or bilateral inter-positional silicone sheet

    Get PDF
    PURPOSE: To evaluate mid-term results from using a silicone sheet for inter-positional arthroplasty in moderate or severe cases of osteoarthrosis of the temporo-mandibular joint (TMJ). To also determine any remaining indications from this method. PATIENTS AND METHODS: This retrospective study included patients that underwent surgery between 2008 and 2016. Pre- and post-operative mouth opening (MO), according to inter-incisal distance (mm) and pain score (PS: 0=no pain to 4=very severe pain) were recorded for 24 patients. Patients were divided according to thickness of the silicone sheet (group A: 1.0 mm, group B: 1.5 mm). RESULTS: The cohort included 22 females (92%). Mean age at surgery was 55 years±13 (26-80). Mean length of follow-up was 26 months±24 (6-80). Mean improvement in MO was 8.2 mm (+33%) and of PS was 1.7 (-68%). MO was not improved for two patients and worsened for one. PS score improved for all patients. No statistical difference was found between groups A and B. There was also a tendency for degradation of outcomes over time. CONCLUSION: The poor reputation of prosthetic discoplasty was not as evident in our series, even though anatomical and functional status seemed to deteriorate over time. This is because total-joint prosthetic replacement is often proposed instead. However, for elderly or fragile patients that have severe pain, and regarding cost-benefit aspects, conventional arthroplasty can still be discussed, especially since French national health-care insurance does not yet support TMJ prosthetic replacement for osteoarthrosis

    Staphylococcus Epidermidis Producteur D’entérotoxine C Impliqué Dans Une Septicémie À Foyer Urinaire

    Get PDF
    In developing countries, coagulase-negative staphylococcal (SCN) infections are often neglected. Here, we describe the identification of a coagulase-negative staphylococcal strain secreting type C staphylococcal enterotoxin (SEC) in a field weakened by severe malaria in a 12-year-old child and summarize the clinical characteristics of the patient. The identification of the strain is carried out by MALDI-TOF mass spectrometry after protein extraction. The toxigenic capacity of the species in question is determined by the polymerase chain reaction (PCR) and the radial immunoprecipitation method. The patient's medical record was used for the study of the correlation between the clinical phenotype of the patient and the production of SEC by the strain. S. epidermidis was identified as the pathogen responsible of bacteremia which induces clinical sepsis, hematemesis and thrombocytopenia. The PCR test revealed that the isolated strain was positive for sec gene and its expression was confirmed by the radial immunoprecipitation assay. The study of the patient's medical record shows that the enterotoxin produced by the strain may have contributed to the severity of the clinical picture with the presence of disseminated intravascular coagulation stigmata (DIC) in a context of sepsis with a urinary starting point. These data suggest that CNS infections may be underestimated due to difficulties in species identification and the toxigenic capacity of some of these isolates

    On the Characterization and Selection of Diverse Conformational Ensembles, with Applications to Flexible Docking

    Get PDF
    To address challenging flexible docking problems, a number of docking algorithms pre-generate large collections of candidate conformers. To remove the redundancy from such ensembles, a central problem in this context is to report a selection of conformers maximizing some geometric diversity criterion. We make three contributions to this problem. First, we resort to geometric optimization so as to report selections maximizing the molecular volume or molecular surface area (MSA) of the selection. Greedy strategies are developed, together with approximation bounds. Second, to assess the efficacy of our algorithms, we investigate two conformer ensembles corresponding to a flexible loop of four protein complexes. By focusing on the MSA of the selection, we show that our strategy matches the MSA of standard selection methods, but resorting to a number of conformers between one and two orders of magnitude smaller. This observation is qualitatively explained using the Betti numbers of the union of balls of the selection. Finally, we replace the conformer selection problem in the context of multiple-copy flexible docking. On the afore-mentioned systems, we show that using the loops selected by our strategy can improve the result of the docking process

    Critical clearing time determination and enhancement of grid-forming converters embedding virtual impedance as current limitation algorithm

    Get PDF
    The present paper deals with the post-fault synchronization of a voltage source converter based on the droop control. In case of large disturbances on the grid, the current is limited via current limitation algorithms such as the virtual impedance. During the fault, the power converter internal frequency deviates resulting in a converter angle divergence. Thereby, the system may lose the synchronism after fault clearing and which may lead to instability. Hence, this paper proposes a theoretical approach to explain the dynamic behavior of the grid forming converter subject to a three phase bolted fault. A literal expression of the critical clearing time is defined. Due to the precise analysis of the phenomenon, a simple algorithm can be derived to enhance the transient stability. It is based on adaptive gain included in the droop control. These objectives have been achieved with no external information and without switching from one control to the other. To prove the effectiveness of the developed control, experimental test cases have been performed in different faulted conditions

    Inertia effect and load sharing capability of grid forming converters connected to a transmission grid

    Get PDF
    The virtual synchronous machine concept (VSM) has been developed initially to reproduce the synchronous machine stabilizing effect by providing inertia with the emulation of swing equation, whereas droop control is developed initially to ensure load sharing and has no inertia. An introduction of a low pass filter to droop control has been motivated to filter the active power measurement and ensures a time decoupling with the inner control loops, whereas, this low-pass filter can also provide inertia to the system. This functionality is limited due to its negative impact on the active power dynamic. This paper proposes an analysis of the conventional droop control by showing its limitations and proposes an improved inertial droop control that allows providing the inertia to the system and ensures a good dynamic behavior of the active power at once in simple manner, and without modifying the load sharing capability. The results obtained are compared to the conventional method (Droop control and VSM) in various topologies in order to show the relevance of the proposed method

    Power Converters Classification and Characterization in Power Transmission Systems

    Get PDF
    Because of the throng of control strategies based Voltage Source Converters (VSC) recently proposed in the literature; their classification and characterization are becoming a trending topic. The high similarities of the proposed control strategies may lead to confusions and a misunderstanding of vocabulary. Therefore, this paper seeks first to highlight the possible features fulfilled by power converters in a large power system. The combination of these features is used to classify power converters. Furthermore, power converters can be seen by a power transmission system operators as black boxes, and they may have the same inputs and outputs, which makes their characterizations more difficult. This paper looks to show that only the fundamental nature of the source has an influence on the system dynamic behavior, thus, power converter can be characterized from their transient behavior in response to grid disturbances.Migrate, Horizon 202

    Tuning of Cascaded Controllers for Robust Grid-Forming Voltage Source Converter

    Get PDF
    From the origin of the grid, energy has been delivered to electrical loads mainly by synchronous machines. All the main rules to manage the grid have been based on the electromechanical behavior of these machines which have been extensively studied for many years. Due to the increase of HVDC link and renewable energy sources as wind turbine and PV, power converters are massively introduced in the grid with a fundamentally different dynamic behavior. Some years ago, they were connected as simple power injector. Then, they were asked to provide some ancillary services to the grid, in the future, grid forming capability will be required. Even if gridforming converters had been extensively studied for microgrids and offshore grids, it has to be adapted to transmission grid where the topology may be largely modified. This paper presents an algorithm for calculating the controller parameters of a gridforming converter which guarantee a stable behavior for many different configurations of the grid.MIGRATE, Horizon 202

    Tuning of AC voltage-controlled VSC based Linear Quadratic Regulation

    Get PDF
    In the near future, power converters will be massively introduced in transmission grids due to renewable energy sources and high voltage direct current (HVDC) increase. Voltage Source Converter (VSC) control laws assume that Synchronous Generators (SGs) build a stiff AC voltage which allows the synchronization of converters. This is one of the major reasons that limit the high integration of currentsource converters in transmission grid. This constraint is no longer relevant when power converters operate as a voltage source based on the grid-forming concept. This concept uses an inner cascaded PI controllers in order to regulate the output AC voltage. However, it is difficult to tune its controller parameters for stable operation in grid-connected mode. This paper proposes an alternative state-feedback control with integral compensator based linear quadratic regulation (LQR) in order to ensure a stable operation and to get a better AC voltage transient and good decoupling between reactive and active power. The proposed control will be fully analyzed and compared to conventional methods.MIGRATE, Horizon 202

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    corecore