160 research outputs found

    Quasi-freestanding and single-atom thick layer of hexagonal boron nitride as a substrate for graphene synthesis

    Full text link
    We demonstrate that freeing a single-atom thick layer of hexagonal boron nitride (hbn) from tight chemical bonding to a Ni(111) thin film grown on a W(110) substrate can be achieved by intercalation of Au atoms into the interface. This process has been systematically investigated using angle-resolved photoemission spectroscopy, X-ray photoemission and absorption techniques. It has been demonstrated that the transition of the hbn layer from the "rigid" into the "quasi-freestanding" state is accompanied by a change of its lattice constant. Using chemical vapor deposition, graphene has been successfully synthesized on the insulating, quasi-freestanding hbn monolayer. We anticipate that the in situ synthesized weakly interacting graphene/hbn double layered system could be further developed for technological applications and may provide perspectives for further inquiry into the unusual electronic properties of graphene.Comment: in print in Phys. Rev.

    Induced magnetism of carbon atoms at the graphene/Ni(111) interface

    Full text link
    We report an element-specific investigation of electronic and magnetic properties of the graphene/Ni(111) system. Using magnetic circular dichroism, the occurrence of an induced magnetic moment of the carbon atoms in the graphene layer aligned parallel to the Ni 3d magnetization is observed. We attribute this magnetic moment to the strong hybridization between C π\pi and Ni 3d valence band states. The net magnetic moment of carbon in the graphene layer is estimated to be in the range of 0.05−0.1μB0.05-0.1 \mu_B per atom.Comment: 10 pages, 3 figure

    The helicity amplitudes A1/2_{1/2} and A3/2_{3/2} for the D13(1520)_{13}(1520) resonance obtained from the γ⃗p⃗→pπ0\vec{\gamma} \vec{p} \to p \pi^0 reaction}

    Full text link
    The helicity dependence of the γ⃗p⃗→pπ0\vec{\gamma} \vec{p} \to p \pi^0 reaction has been measured for the first time in the photon energy range from 550 to 790 MeV. The experiment, performed at the Mainz microtron MAMI, used a 4π\pi-detector system, a circularly polarized, tagged photon beam, and a longitudinally polarized frozen-spin target. These data are predominantly sensitive to the D13(1520)D_{13}(1520) resonance and are used to determine its parameters.Comment: 5 pages, 4 figure

    First measurement of the Gerasimov-Drell-Hearn integral for Hydrogen from 200 to 800 MeV

    Full text link
    A direct measurement of the helicity dependence of the total photoabsorption cross section on the proton was carried out at MAMI (Mainz) in the energy range 200 < E_gamma < 800 MeV. The experiment used a 4π\pi detection system, a circularly polarized tagged photon beam and a frozen spin target. The contributions to the Gerasimov-Drell-Hearn sum rule and to the forward spin polarizability γ0\gamma_0 determined from the data are 226 \pm 5 (stat)\pm 12(sys) \mu b and -187 \pm 8 (stat)\pm 10(sys)10^{-6} fm^4, respectively, for 200 < E_\gamma < 800 MeV.Comment: 6 pages, 3 figures, 3 table

    In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper.

    Get PDF
    Using a combination of complementary in situ X-ray photoelectron spectroscopy and X-ray diffraction, we study the fundamental mechanisms underlying the chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) on polycrystalline Cu. The nucleation and growth of h-BN layers is found to occur isothermally, i.e., at constant elevated temperature, on the Cu surface during exposure to borazine. A Cu lattice expansion during borazine exposure and B precipitation from Cu upon cooling highlight that B is incorporated into the Cu bulk, i.e., that growth is not just surface-mediated. On this basis we suggest that B is taken up in the Cu catalyst while N is not (by relative amounts), indicating element-specific feeding mechanisms including the bulk of the catalyst. We further show that oxygen intercalation readily occurs under as-grown h-BN during ambient air exposure, as is common in further processing, and that this negatively affects the stability of h-BN on the catalyst. For extended air exposure Cu oxidation is observed, and upon re-heating in vacuum an oxygen-mediated disintegration of the h-BN film via volatile boron oxides occurs. Importantly, this disintegration is catalyst mediated, i.e., occurs at the catalyst/h-BN interface and depends on the level of oxygen fed to this interface. In turn, however, deliberate feeding of oxygen during h-BN deposition can positively affect control over film morphology. We discuss the implications of these observations in the context of corrosion protection and relate them to challenges in process integration and heterostructure CVD.P.R.K. acknowledges funding from the Cambridge Commonwealth Trust and the Lindemann Trust Fellowship. R.S.W. acknowledges a research fellowship from St. John’s College, Cambridge. S.H. acknowledges funding from ERC grant InsituNANO (no. 279342), EPSRC under grant GRAPHTED (project reference EP/K016636/1), Grant EP/H047565/1 and EU FP7 Work Programme under grant GRAFOL (project reference 285275). The European Synchrotron Radiation Facility (ESRF) is acknowledged for provision of synchrotron radiation and assistance in using beamline BM20/ROBL. We acknowledge Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for synchrotron radiation at the ISISS beamline and continuous support of our experiments.This is the final version. It was first published by ACS at http://pubs.acs.org/doi/abs/10.1021/cm502603

    Transfer-free electrical insulation of epitaxial graphene from its metal substrate

    Full text link
    High-quality, large-area epitaxial graphene can be grown on metal surfaces but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a step-wise intercalation of silicon and oxygen, and the eventual formation of a SiO2_2 layer between the graphene and the metal. We follow the reaction steps by x-ray photoemission spectroscopy and demonstrate the electrical insulation using a nano-scale multipoint probe technique.Comment: Accepted for publication in Nano Letter
    • …
    corecore