417 research outputs found

    A physically motivated classification of stripped-envelope supernovae

    Get PDF
    The classification of stripped-envelope supernovae (SE-SNe) is revisited using modern data-sets. Spectra are analysed using an empirical method to “blindly” categorise SNe according to spectral feature strength and appearance. This method makes a clear distinction between SNe that are He-rich (IIb/Ib) and He-poor (Ic) and further analysis is performed on each subgroup. For He-rich SNe the presence of H becomes the focus. The strength, velocity, and ratio between absorption and emission of Hα is measured, along with additional analysis of He I lines, in order to categorise the SNe. The He-poor SNe are ordered according to the number of absorption features N present in the spectra, which is a measure of the degree of line blending. The kinetic energy per unit mass Ek/Mej is strongly affected by mass at high velocity and such situations principally occur when the outer density profile of the ejecta is shallow, leading to the blending of lines. Using the results, the existing SE-SN taxonomic scheme is adapted. He-rich SNe are split into four groups, IIb, IIb(I), Ib(II), and Ib, which represent H-rich to H-poor SNe. The SNe Ic category of broad-lined Ic (Ic-BL) is abandoned in favour of quantifying the line blending via before peak. To better reflect the physical parameters of the explosions, the velocity of Si II at peak and the half-luminosity decay time t+1/2 are included to give SNe Ic a designation of Ic- (v p, SiII/t+1/2)

    Breaking the color-reddening degeneracy in type Ia supernovae

    Get PDF
    A new method to study the intrinsic color and luminosity of type Ia supernovae (SNe Ia) is presented. A metric space built using principal component analysis (PCA) on spectral series SNe Ia between -12.5 and +17.5 days from B maximum is used as a set of predictors. This metric space is built to be insensitive to reddening. Hence, it does not predict the part of color excess due to dust-extinction. At the same time, the rich variability of SN Ia spectra is a good predictor of a large fraction of the intrinsic color variability. Such metric space is a good predictor of the epoch when the maximum in the B-V color curve is reached. Multivariate Partial Least Square (PLS) regression predicts the intrinsic B band light-curve and the intrinsic B-V color curve up to a month after maximum. This allows to study the relation between the light curves of SNe Ia and their spectra. The total-to-selective extinction ratio RV in the host-galaxy of SNe Ia is found, on average, to be consistent with typical Milky-Way values. This analysis shows the importance of collecting spectra to study SNe Ia, even with large sample publicly available. Future automated surveys as LSST will provide a large number of light curves. The analysis shows that observing accompaning spectra for a significative number of SNe will be important even in the case of "normal" SNe Ia

    Birth season and environmental influences on blood leucocyte and lymphocyte subpopulations in rural Gambian infants

    Get PDF
    BACKGROUND: In rural Gambia, birth season predicts infection-related adult mortality, providing evidence that seasonal factors in early life may programme immune development. This study tested whether lymphocyte subpopulations assessed by automated full blood count and flow cytometry in cord blood and at 8, 16 and 52 weeks in rural Gambian infants (N = 138) are affected by birth season (DRY = Jan-Jun, harvest season, few infections; WET = Jul-Dec, hungry season, many infections), birth size or micronutrient status. RESULTS: Geometric mean cord and postnatal counts were higher in births occurring in the WET season with both season of birth and season of sampling effects. Absolute CD3+, CD8+, and CD56+ counts, were higher in WET season births, but absolute CD4+ counts were unaffected and percentage CD4+ counts were therefore lower. CD19+ counts showed no association with birth season but were associated with concurrent plasma zinc status. There were no other associations between subpopulation counts and micronutrient or anthropometric status. CONCLUSION: These results demonstrate a seasonal influence on cell counts with a disproportionate effect on CD8+ and CD56+ relative to CD4+ cells. This seasonal difference was seen in cord blood (indicating an effect in utero) and subsequent samples, and is not explained by nutritional status. These findings are consistent with the hypothesis than an early environmental exposure can programme human immune development

    Modelling the Type Ic SN 2004aw: a moderately energetic explosion of a massive C plus O star without a GRB

    Get PDF
    An analysis of the Type Ic supernova (SN) 2004aw is performed by means of models of the photospheric and nebular spectra and of the bolometric light curve. SN 2004aw is shown not to be ‘broad-lined’, contrary to previous claims, but rather a ‘fast-lined’ SN Ic. The spectral resemblance to the narrow-lined Type Ic SN 1994I, combined with the strong nebular [O I] emission and the broad light curve, points to a moderately energetic explosion of a massive C+O star. The ejected 56Ni mass is ≈0.20 M⊙. The ejecta mass as constrained by the models is ∼3–5 M⊙, while the kinetic energy is estimated as EK ∼3–6 × 1051 erg. The ratio EK/M⊙, the specific energy that influences the shape of the spectrum, is therefore ≈1. The corresponding zero-age main-sequence mass of the progenitor star may have been ∼23–28 M⊙. Tests show that a flatter outer density structure may have caused a broad-lined spectrum at epochs before those observed without affecting the later epochs when data are available, implying that our estimate of EK is a lower limit. SN 2004aw may have been powered by either a collapsar or a magnetar, both of which have been proposed for gamma-ray burst SNe. Evidence for this is seen in the innermost layers, which appear to be highly aspherical as suggested by the nebular line profiles. However, any engine was not extremely powerful, as the outer ejecta are more consistent with a spherical explosion and no gamma-ray burst was detected in coincidence with SN 2004aw

    Observations and spectral modelling of the narrow-lined Type Ic SN 2017ein

    Get PDF
    SN 2017ein is a narrow-lined Type Ic SN that was found to share a location with a point-like source in the face on spiral galaxy NGC 3938 in pre-supernova images, making SN 2017ein the first credible detection of a Type Ic progenitor. Results in the literature suggest that this point-like source is likely a massive progenitor of 60-80 M·, depending on if the source is a binary, a single star, or a compact cluster. Using new photometric and spectral data collected for 200 d, including several nebular spectra, we generate a consistent model covering the photospheric and nebular phase using a Monte Carlo radiation transport code. Photospheric phase modelling finds an ejected mass 1.2-2.0 M· with an Ek of ∼(0.9 ± 0.2) × 1051 erg, with approximately 1 M· of material below 5000 km s-1 found from the nebular spectra. Both photospheric and nebular phase modelling suggests a 56Ni mass of 0.08-0.1 M·. Modelling the [O i] emission feature in the nebular spectra suggests that the innermost ejecta are asymmetric. The modelling results favour a low-mass progenitor of 16-20 M·, which is in disagreement with the pre-supernova derived high-mass progenitor. This contradiction is likely due to the pre-supernova source not representing the actual progenitor

    Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T- Cell Development in Offspring

    Get PDF
    Background Breastfeeding protects against illnesses and death in hazardous environments, an effect partly mediated by improved immune function. One hypothesis suggests that factors within milk supplement the inadequate immune response of the offspring, but this has not been able to account for a series of observations showing that factors within maternally derived milk may supplement the development of the immune system through a direct effect on the primary lymphoid organs. In a previous human study we reported evidence suggesting a link between IL-7 in breast milk and the thymic output of infants. Here we report evidence in mice of direct action of maternally-derived IL-7 on T cell development in the offspring. Methods and Findings  We have used recombinant IL-7 labelled with a fluorescent dye to trace the movement in live mice of IL-7 from the stomach across the gut and into the lymphoid tissues. To validate the functional ability of maternally derived IL- 7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets of thymocytes and populations of peripheral T cells were significantly higher than those found in knock-out mice receiving milk from IL-7 knock-out mothers. Conclusions/Significance Our study provides direct evidence that interleukin 7, a factor which is critical in the development of T lymphocytes, when maternally derived can transfer across the intestine of the offspring, increase T cell production in the thymus and support the survival of T cells in the peripheral secondary lymphoid tissue

    The rise and fall of an extraordinary Ca-rich transient: The discovery of ATLAS19dqr/SN 2019bkc

    Get PDF
    This work presents the observations and analysis of ATLAS19dqr/SN 2019bkc, an extraordinary rapidly evolving transient event located in an isolated environment, tens of kiloparsecs from any likely host. Its light curves rise to maximum light in 5-6 d and then display a decline of Δm15 ∼ 5 mag. With such a pronounced decay, it has one of the most rapidly evolving light curves known for a stellar explosion. The early spectra show similarities to normal and "ultra-stripped" type Ic SNe, but the early nebular phase spectra, which were reached just over two weeks after explosion, display prominent calcium lines, marking SN 2019bkc as a Ca-rich transient. The Ca emission lines at this phase show an unprecedented and unexplained blueshift of 10 000-12 000 km s-1. Modelling of the light curve and the early spectra suggests that the transient had a low ejecta mass of 0.2-0.4 M⊙ and a low kinetic energy of (2-4) × 1050 erg, giving a specific kinetic energy Ek/Mej ∼ 1 [1051 erg]/M⊙. The origin of this event cannot be unambiguously defined. While the abundance distribution used to model the spectra marginally favours a progenitor of white dwarf origin through the tentative identification of Ar II, the specific kinetic energy, which is defined by the explosion mechanism, is found to be more similar to an ultra-stripped core-collapse events. SN 2019bkc adds to the diverse range of physical properties shown by Ca-rich events. © ESO 2020

    PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses

    Get PDF
    The hydrogen-poor supernova PTF11rka (z = 0.0744), reported by the Palomar Transient Factory, was observed with various telescopes starting a few days after the estimated explosion time of 2011 Dec. 5 UT and up to 432 rest-frame days thereafter. The rising part of the light curve was monitored only in the R_PTF filter band, and maximum in this band was reached ~30 rest-frame days after the estimated explosion time. The light curve and spectra of PTF11rka are consistent with the core-collapse explosion of a ~10 Msun carbon-oxygen core evolved from a progenitor of main-sequence mass 25--40 Msun, that liberated a kinetic energy (KE) ~ 4 x 10^{51} erg, expelled ~8 Msun of ejecta (Mej), and synthesised ~0.5 Msun of 56Nichel. The photospheric spectra of PTF11rka are characterised by narrow absorption lines that point to suppression of the highest ejecta velocities ~>15,000 km/s. This would be expected if the ejecta impacted a dense, clumpy circumstellar medium. This in turn caused them to lose a fraction of their energy (~5 x 10^50 erg), less than 2% of which was converted into radiation that sustained the light curve before maximum brightness. This is reminiscent of the superluminous SN 2007bi, the light-curve shape and spectra of which are very similar to those of PTF11rka, although the latter is a factor of 10 less luminous and evolves faster in time. PTF11rka is in fact more similar to gamma-ray burst supernovae (GRB-SNe) in luminosity, although it has a lower energy and a lower KE/Mej ratio

    The intermediate nebular phase of SN 2014J: Onset of clumping as the source of recombination

    Get PDF
    At the age of about 1 yr, the spectra of most Type Ia supernovae (SNe Ia) are dominated by strong forbidden nebular emission lines of Fe II and Fe III. Later observations (at about 2 yr) of the nearby SN 2011fe showed an unexpected shift of ionization to Fe I and Fe II. Spectra of the very nearby SN Ia 2014J at an intermediate phase (1-1.5 yr) that are presented here show a progressive decline of Fe III emission, while Fe I is not yet strong. The decrease in ionization can be explained if the degree of clumping in the ejecta increases significantly at ∼1.5 yr, at least in the Fe-dominated zone. Models suggest that clumps remain coherent after about one year, behaving like shrapnel. The high density in the clumps, combined with the decreasing heating rate, would then cause recombination. These data may witness the phase of transition from relatively smooth ejecta to the very clumpy morphology that is typical of SN remnants. The origin of the increased clumping may be the development of local magnetic fields
    corecore