236 research outputs found

    Year-round shellfish exploitation in the Levant and implications for Upper Palaeolithic hunter-gatherer subsistence

    Get PDF
    Recent studies have shown that the use of aquatic resources has greater antiquity in hominin diets than pre- viously thought. At present, it is unclear when hominins started to habitually consume marine resources. This study examines shellfish exploitation from a behavioural ecology perspective, addressing how and when past hunter-gatherers from the Levant used coastal resources for subsistence purposes. We investigate the seasonality of shellfish exploitation in the Levantine Upper Palaeolithic through oxygen isotope analysis on shells of the intertidal rocky shore mollusc Phorcus (Osilinus) turbinatus from the key site Ksâr ‘Akil (Lebanon). At this rockshelter, multi-layered archaeological deposits contained remains of both marine and terrestrial molluscs in relatively large quantities, which were consumed and used as tools and ornaments by the occupants of the site. Our results indicate that at the start of the Initial Upper Palaeolithic (IUP), there is no evidence for shellfish consumption. Humans started to take fresh shellfish to the rockshelter from the second half of the IUP onward, albeit in low quantities. During the Early Upper Palaeolithic (EUP) shellfish exploitation became increasingly frequent. Oxygen isotope data show that shellfish exploitation was practised in every season throughout most of the Upper Palaeolithic (UP), with an emphasis on the colder months. This suggests that coastal resources had a central role in early UP foraging strategies, rather than a seasonally restricted supplementary one. Year-round shellfish gathering, in turn, suggests that humans occupied the rockshelter at different times of the year, al- though not necessarily continuously. Our oxygen isotope data is complemented with broader-scale exploitation patterns of faunal resources, both vertebrate and invertebrate, at the site. The inclusion of coastal marine re- sources signifies a diversification of the human diet from the EUP onward, which is also observed in foraging practices linked to the exploitation of terrestrial fauna.H2020 Marie Skłodowska-Curie fellowship “EU-BEADS”, project number: 656325 and the Max Planck Society

    Effect of preoperative thoracic duct drainage on canine kidney transplantation

    Get PDF
    Chronic drainage of the thoracic duct to the esophagus was developed in dogs, and its efficacy in immunomodulation was tested using kidney transplantation. Compared to 9.7 days in the control, the mean animal survival was prolonged to 9.9 days, 17.8 days, and 18.5 days when TDD was applied preoperatively for 3 weeks, 6 weeks, and 9 weeks, respectively. Prolongation was significant after 6 weeks. Patency of the fistula was 93.5, 80.4, and 76.1% at respective weeks. Number of peripheral T-lymphocytes determined by a new monoclonal antibody diminished after 3 weeks. All animals were in normal health, requiring no special care for fluid, electrolyte, or protein replacement

    Alternatively Activated Mononuclear Phagocytes from the Skin Site of Infection and the Impact of IL-4Rα Signalling on CD4+T Cell Survival in Draining Lymph Nodes after Repeated Exposure to Schistosoma mansoni Cercariae

    Get PDF
    In a murine model of repeated exposure of the skin to infective Schistosoma mansoni cercariae, events leading to the priming of CD4 cells in the skin draining lymph nodes were examined. The dermal exudate cell (DEC) population recovered from repeatedly (4x) exposed skin contained an influx of mononuclear phagocytes comprising three distinct populations according to their differential expression of F4/80 and MHC-II. As determined by gene expression analysis, all three DEC populations (F4/80-MHC-IIhigh, F4/80+MHC-IIhigh, F4/80+MHC-IIint) exhibited major up-regulation of genes associated with alternative activation. The gene encoding RELMα (hallmark of alternatively activated cells) was highly up-regulated in all three DEC populations. However, in 4x infected mice deficient in RELMα, there was no change in the extent of inflammation at the skin infection site compared to 4x infected wild-type cohorts, nor was there a difference in the abundance of different mononuclear phagocyte DEC populations. The absence of RELMα resulted in greater numbers of CD4+ cells in the skin draining lymph nodes (sdLN) of 4x infected mice, although they remained hypo-responsive. Using mice deficient for IL-4Rα, in which alternative activation is compromised, we show that after repeated schistosome infection, levels of regulatory IL-10 in the skin were reduced, accompanied by increased numbers of MHC-IIhigh cells and CD4+ T cells in the skin. There were also increased numbers of CD4+ T cells in the sdLN in the absence of IL-4Rα compared to cells from singly infected mice. Although their ability to proliferate was still compromised, increased cellularity of sdLN from 4x IL-4RαKO mice correlated with reduced expression of Fas/FasL, resulting in decreased apoptosis and cell death but increased numbers of viable CD4+ T cells. This study highlights a mechanism through which IL-4Rα may regulate the immune system through the induction of IL-10 and regulation of Fas/FasL mediated cell death

    Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    Get PDF
    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bena, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Godoy Bürki, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; Argentin

    Combining ‘‘real effort’’ with induced effort costs: the ball-catching task

    Get PDF
    We introduce the “ball-catching task”, a novel computerized task, which combines a tangible action (“catching balls”) with induced material cost of effort. The central feature of the ball-catching task is that it allows researchers to manipulate the cost of effort function as well as the production function, which permits quantitative predictions on effort provision. In an experiment with piece-rate incentives we find that the comparative static and the point predictions on effort provision are remarkably accurate. We also present experimental findings from three classic experiments, namely, team production, gift exchange and tournament, using the task. All of the results are closely in line with the stylized facts from experiments using purely induced values. We conclude that the ball-catching task combines the advantages of real effort tasks with the use of induced values, which is useful for theory-testing purposes as well as for applications

    Therapeutic Implications of GIPC1 Silencing in Cancer

    Get PDF
    GIPC1 is a cytoplasmic scaffold protein that interacts with numerous receptor signaling complexes, and emerging evidence suggests that it plays a role in tumorigenesis. GIPC1 is highly expressed in a number of human malignancies, including breast, ovarian, gastric, and pancreatic cancers. Suppression of GIPC1 in human pancreatic cancer cells inhibits in vivo tumor growth in immunodeficient mice. To better understand GIPC1 function, we suppressed its expression in human breast and colorectal cancer cell lines and human mammary epithelial cells (HMECs) and assayed both gene expression and cellular phenotype. Suppression of GIPC1 promotes apoptosis in MCF-7, MDA-MD231, SKBR-3, SW480, and SW620 cells and impairs anchorage-independent colony formation of HMECs. These observations indicate GIPC1 plays an essential role in oncogenic transformation, and its expression is necessary for the survival of human breast and colorectal cancer cells. Additionally, a GIPC1 knock-down gene signature was used to interrogate publically available breast and ovarian cancer microarray datasets. This GIPC1 signature statistically correlates with a number of breast and ovarian cancer phenotypes and clinical outcomes, including patient survival. Taken together, these data indicate that GIPC1 inhibition may represent a new target for therapeutic development for the treatment of human cancers

    Rapid generation of human B-cell lymphomas via combined expression of Myc and Bcl2 and their use as a preclinical model for biological therapies

    Get PDF
    Although numerous mouse models of B-cell malignancy have been developed via the enforced expression of defined oncogenic lesions, the feasibility of generating lineage-defined human B-cell malignancies using mice reconstituted with modified human hematopoietic stem cells (HSCs) remains unclear. In fact, whether human cells can be transformed as readily as murine cells by simple oncogene combinations is a subject of considerable debate. Here, we describe the development of humanized mouse model of MYC/BCL2-driven ‘double-hit’ lymphoma. By engrafting human HSCs transduced with the oncogene combination into immunodeficient mice, we generate a fatal B malignancy with complete penetrance. This humanized-MYC/BCL2-model (hMB) accurately recapitulates the histopathological and clinical aspects of steroid-, chemotherapy- and rituximab-resistant human ‘double-hit’ lymphomas that involve the MYC and BCL2 loci. Notably, this model can serve as a platform for the evaluation of antibody-based therapeutics. As a proof of principle, we used this model to show that the anti-CD52 antibody alemtuzumab effectively eliminates lymphoma cells from the spleen, liver and peripheral blood, but not from the brain. The hMB humanized mouse model underscores the synergy of MYC and BCL2 in ‘double-hit’ lymphomas in human patients. Additionally, our findings highlight the utility of humanized mouse models in interrogating therapeutic approaches, particularly human-specific monoclonal antibodies.Kathy and Curt Marble Cancer Research FundSingapore-MIT Alliance for Research and TechnologyNational Institutes of Health (U.S.) (Grant R01-CA128803)Virginia and Daniel K. Ludwig Graduate FellowshipNational Institute of General Medical Sciences (U.S.) (Medical Scientist Training Program Grant T32GM007753)MIT School of Science (Cancer Research Fellowship

    Crystal Structure of the Minimalist Max-E47 Protein Chimera

    Get PDF
    Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5′-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47 dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts

    Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC) differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC). Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin) deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.Funding was provided by Science Foundation Ireland (President of Ireland Young Researcher Award: 08/Y15/B1336) and the European Research Council (StemRepair – Project number 258463)
    corecore