108 research outputs found

    Exploitation of Dynamic Communication Patterns through Static Analysis

    Full text link
    Abstract not provide

    Sensorimotor semantics on the spot: brain activity dissociates between conceptual categories within 150 ms

    Get PDF
    Although semantic processing has traditionally been associated with brain responses maximal at 350–400 ms, recent studies reported that words of different semantic types elicit topographically distinct brain responses substantially earlier, at 100–200 ms. These earlier responses have, however, been achieved using insufficiently precise source localisation techniques, therefore casting doubt on reported differences in brain generators. Here, we used high-density MEG-EEG recordings in combination with individual MRI images and state-of-the-art source reconstruction techniques to compare localised early activations elicited by words from different semantic categories in different cortical areas. Reliable neurophysiological word-category dissociations emerged bilaterally at ~ 150 ms, at which point action-related words most strongly activated frontocentral motor areas and visual object-words occipitotemporal cortex. These data now show that different cortical areas are activated rapidly by words with different meanings and that aspects of their category-specific semantics is reflected by dissociating neurophysiological sources in motor and visual brain systems

    Comparative cellular analysis of motor cortex in human, marmoset and mouse

    Get PDF
    The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals(1). Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.Cardiovascular Aspects of Radiolog

    Comparative cellular analysis of motor cortex in human, marmoset and mouse

    Get PDF
    The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    The demand for broadband

    No full text
    No description supplie

    The Thought-Translation-Device (TTD): A brain-computerinterface for the completely paralyzed

    No full text
    On-line classification of slow cortical potentials (SCP) of the EEG allows the characterization of two to four different brain states which can be used for computer based selection of letters or words. 7 completely paralyzed, artificially respirated and fed lockedin patients suffering from amyotrophic lateral sclerosis were trained to produce negative and positive SCP at the Vertex-electrode. After successful training selection of letters or words was possible with a maximum speed of one letter or word per minute. Patients whose training was initiated late at a completely locked-in-state were only able to answer yes-no questions with their SCP. New classification algorithms, in particular support vector machines, allow better classifications. First attempts to build a 150 channel MEG/EEG brain-computer-interface (BCI) for the locked-in and otherwise paralyzed patients are reported. Critical for successful application, however, is the selection of simple behavioral paradigms allowing patients with cognitive disorders and higher animals to produce classifiable brain states. The operant regulation with feedback seems to be an easy to apply and psychologically most adapted paradigm for BCI

    How Free is the Radio Spectrum?

    No full text
    New technologies provide new opportunities for radio spectrum allocation and frequency use. This article seeks to summarize papers that form a special issue on spectrum management, and to provide also some outlooks toward policy. This editorial gives an introduction to the selection of papers included in this special issue. The editorial lays out the basic questions guiding the debate about spectrum management and explains the contribution of the various papers to this debate. The editorial points out the high social, political and economic importance of spectrum management, and the need for a critical discussion of regulatory approaches is emphasised. The editorial summarizes papers for a special issue on spectrum management and will be of value to academics, business and policy makers. \ua9 2006, Emerald Group Publishing Limite

    e

    No full text

    Surveying regulatory regimes for EC communications law

    No full text
    • …
    corecore