13 research outputs found

    Development of a Combined Quanity and Quality Model for Optimal Groundwater Management

    Get PDF
    Presented is a procedure for incorporating solute transport as linear constraints within computer models for optimizing regional groundwater extraction strategies. The MODCON modelling procedure uses linear goal programming, embedded linearized equations for flow and solute transport and a MOC simulation model. Assumed is 2D flow and solute transport and a dispersed conservative contaminant. The MODCON procedure develops steady groundwater extraction strategies that will satisfy future groundwater quality constraints while simultaneously causing future piezometric heads to be as close to current heads as possible. The procedure is applied to a 160 square mile area in southeastern Arkansas

    Development of a combined quantity and quality model for optimal unsteady groundwater management

    Get PDF
    Presented is a procedure for incorporating solute transport as linear constraints within computer models for optimizing regional groundwater extraction strategies. The MODCON modelling procedure uses linear goal programming, embedded linearized equations for flow and solute transport and a MOC simulation model. Assumed is 20 flow and solute transport and a dispersed conservative contaminant. The MODCON procedure develops steady groundwater extraction strategies that will satisfy future groundwater quality constraints while simultaneously causing future piezometric heads to be as close to current heads as possible. The procedure is applied to a 160 square mile area in southeastern Arkansas

    Development of linear water quality constraints for optimal groundwater management

    Get PDF
    Proposed is a procedure for incorporating solute transport as linear constraints within computer models for optimizing regional groundwater extraction strategies. . MODCON procedure uses linear goal programming. embedded linearized equations for flow and solute transport. and MOC simulation model. Assumed is 20 flow and solute transport. and a dispersed conservative contaminant

    Financial feasibility of end-user designed rainwater harvesting and greywater reuse systems for high water use households

    Get PDF
    © 2017, The Author(s). Water availability pressures, competing end-uses and sewers at capacity are all drivers for change in urban water management. Rainwater harvesting (RWH) and greywater reuse (GWR) systems constitute alternatives to reduce drinking water usage and in the case of RWH, reduce roof runoff entering sewers. Despite the increasing popularity of installations in commercial buildings, RWH and GWR technologies at a household scale have proved less popular, across a range of global contexts. For systems designed from the top-down, this is often due to the lack of a favourable cost-benefit (where subsidies are unavailable), though few studies have focused on performing full capital and operational financial assessments, particularly in high water consumption households. Using a bottom-up design approach, based on a questionnaire survey with 35 households in a residential complex in Bucaramanga, Colombia, this article considers the initial financial feasibility of three RWH and GWR system configurations proposed for high water using households (equivalent to >203L per capita per day). A full capital and operational financial assessment was performed at a more detailed level for the most viable design using historic rainfall data. For the selected configuration (‘Alt 2’), the estimated potable water saving was 44% (equivalent to 131m3/year) with a rate of return on investment of 6.5% and an estimated payback period of 23years. As an initial end-user-driven design exercise, these results are promising and constitute a starting point for facilitating such approaches to urban water management at the household scale

    Impacts of residence time during storage on potential of water saving for grey water recycling system

    Get PDF
    Grey water recycling has been generally accepted and is about to move into practice in terms of sustainable development. Previous research has revealed the bacteria re-growth in grey water and reclaimed municipal water during storage. However, in most present grey water recycling practices, impacts of water quality changes during storage on the system's performance and design regulation have not been addressed. In this paper, performance of a constructed wetland based grey water recycling system was analysed by taking the constraint of residence time during storage into account using an object based household water cycle model. Two indicators, water saving efficiency (WSE) and residence time index (RTI), are employed to reflect the system's performance and residence time during storage respectively. Results show that WSE and RTI change with storage tank volumes oppositely. As both high WSE and RTI cannot be achieved simultaneously, it is concluded that in order to achieve the most cost-effective and safe solution, systems with both small grey and green tanks are needed, whilst accepting that only relatively modest water saving efficiency targets can be achieved. Higher efficiencies will only be practicable if water quality deterioration in the green water tank can be prevented by some means (e.g. disinfection)

    Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin

    No full text
    The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe > Mn > Cr > Zn > Ni > Cu > Co > Pb > Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area

    A review on greywater reuse: quality, risks, barriers and global scenarios

    No full text
    corecore