84 research outputs found

    Microflow Simulations via the Lattice Boltzmann Method

    Get PDF
    The exact solution to the hierarchy of nonlinear lattice Boltzmann kinetic equations, for the stationary planar Couette flow for any Knudsen number was presented by S. Ansumali et al. [Phys. Rev. Lett., 98 (2007), 124502]. In this paper, simulation results at a non-vanishing value of the Knudsen number are compared with the closed-form solutions for the higher-order moments. The order of convergence to the exact solution is also studied. The lattice Boltzmann simulations are in excellent agreement with the exact solutio

    Deciphering the molecular mechanism of water boiling at heterogeneous interfaces

    Get PDF
    Water boiling control evolution of natural geothermal systems is widely exploited in industrial processes due to the unique non-linear thermophysical behavior. Even though the properties of water both in the liquid and gas state have been extensively studied experimentally and by numerical simulations, there is still a fundamental knowledge gap in understanding the mechanism of the heterogeneous nucleate boiling controlling evaporation and condensation. In this study, the molecular mechanism of bubble nucleation at the hydrophilic and hydrophobic solid–water interface was determined by performing unbiased molecular dynamics simulations using the transition path sampling scheme. Analyzing the liquid to vapor transition path, the initiation of small void cavities (vapor bubbles nuclei) and their subsequent merging mechanism, leading to successively growing vacuum domains (vapor phase), has been elucidated. The molecular mechanism and the boiling nucleation sites’ location are strongly dependent on the solid surface hydrophobicity and hydrophilicity. Then simulations reveal the impact of the surface functionality on the adsorbed thin water molecules film structuring and the location of high probability nucleation sites. Our findings provide molecular-scale insights into the computational aided design of new novel materials for more efficient heat removal and rationalizing the damage mechanisms

    Diffusion and Gas Flow Dynamics in Partially Saturated Smectites.

    Get PDF
    Clays and clay rocks are considered good natural and engineered barriers for deep geological disposal of nuclear waste worldwide. Metal corrosion and organic waste degradation in underground repositories generate significant amounts of gas that should be able to migrate through the multibarrier system to avoid potential pressure buildup, which could be compromising the integrity of the barriers and host rocks. The gas is expected to accumulate in larger pores and eventually form an interconnected network. Under such conditions, the migration of gas molecules takes place both in pore water films and gas-filled macropores. Therefore, mass fluxes depend on the distribution of gas molecules between the water-rich and gas-rich phases and their mobility in both compartments. Classical molecular dynamics (MD) simulations were employed to investigate the mobilities of He, H2, CO2, Ar, and CH4 in a Na-montmorillonite mesopore as a function of the degree of saturation, as well as evaluate the hydrodynamic behavior of the pore fluid in partially saturated clays. The diffusivity of the gas molecules was determined by observing the asymptotic behavior of the mean square displacement in the gas-rich phase and at the gas-water interface. The partition coefficient and Gibbs free energy were analyzed to investigate the transfer of gas molecules between the gas-rich and water-rich phases by observing the molecular trajectories as they cross the vapor-liquid interface. The results revealed that the diffusion coefficient in the gas phase increased with increasing gas-filled pore width and converged asymptotically toward the diffusion coefficient in the bulk state. It could be shown that the diffusion coefficient of gas molecules dissolved in the water films remained constant as long as the interacting water surface was in the bulk-liquid-like phase. This behavior changes in very thin water films. It was observed that the partitioning coefficient of gas molecules at the solid-liquid interface is nearly the same as that in the bulk-liquid-like phase. Partitioning is observed to be strongly dependent on the temperature and gas molecular weights. In the second part of the study, nonequilibrium molecular dynamics (NEMD) simulations were performed to investigate the mobility of gases in pressure-driven decoupled gas-phase dynamics (DGPD) and coupled gas and water phase dynamics (CGWPD) in a partially saturated Na-montmorillonite slit mesopore. The dynamic viscosity of the gas phase was calculated from NEMD simulations and indicated that the viscosity of the gas phase was almost the same in both methods (DGPD and CGWPD). The average slip length for gas molecules at the gas-water interface was also calculated, revealing that the slip-free boundary condition assumed in continuum models is generally invalid for microfluidics and that a slip boundary condition exists at the microscale for specific surface interactions. Finally, a Bosanquet-type equation was developed to predict the diffusion coefficient and dynamic viscosity of gas as a function of the average pore width, gas mean-free path, geometric factor, and thickness of the adsorbed water film

    Simulation of 3D Porous Media Flows with Application to Polymer Electrolyte Fuel Cells

    Get PDF
    A 3D lattice Boltzmann (LB) model with twenty-seven discrete velocities is presented and used for the simulation of three-dimensional porous media flows. Its accuracy in combination with the half-way bounce back boundary condition is assessed. Characteristic properties of the gas diffusion layers that are used in polymer electrolyte fuel cells can be determined with this model. Simulation in samples that have been obtained via X-ray tomographic microscopy, allows to estimate the values of permeability and relative effective diffusivity. Furthermore, the computational LB results are compared with the results of other numerical tools, as well as with experimental value

    Quasi-equilibrium lattice Boltzmann method

    Get PDF
    Abstract.: A general lattice Boltzmann method for simulation of fluids with tailored transport coefficients is presented. It is based on the recently introduced quasi-equilibrium kinetic models, and a general lattice Boltzmann implementation is developed. Lattice Boltzmann models for isothermal binary mixtures with a given Schmidt number, and for a weakly compressible flow with a given Prandtl number are derived and validate

    Theoretical and Numerical Constant Mean Curvature Surface and Liquid Entry Pressure Calculations for a Combined Pillar–Pore Structure

    Get PDF
    peer reviewedModern microfabrication techniques have led to a growing interest in micropillars and pillar–pore structures. Therefore, in this paper a study of the liquid entry pressure of a hydrophobic pillar–pore structure and the corresponding liquid–gas interface shape for the pressurized liquid is presented. We theoretically analysed the constant mean curvature problem for the rotationally symmetric case and determined an analytical expression for the liquid entry pressure of a hydrophobic pillar–pore structure. Furthermore, the shape of the liquid–gas interface as well as a formula for the location of the minimum were derived. The results are useful for designing geometries with specific properties, such as preventing or facilitating liquid intrusion into rough structures. We compared these results to multiphase lattice Boltzmann simulations where equilibrium contact angles in the range of (Formula presented.) to (Formula presented.) were tested. In our further analysis, we compared theoretical findings from previous works to our lattice Boltzmann simulations. The presented cases can serve as a benchmark for the development and validation of numerical multiphase models

    Link-wise Artificial Compressibility Method

    Get PDF
    The Artificial Compressibility Method (ACM) for the incompressible Navier-Stokes equations is (link-wise) reformulated (referred to as LW-ACM) by a finite set of discrete directions (links) on a regular Cartesian mesh, in analogy with the Lattice Boltzmann Method (LBM). The main advantage is the possibility of exploiting well established technologies originally developed for LBM and classical computational fluid dynamics, with special emphasis on finite differences (at least in the present paper), at the cost of minor changes. For instance, wall boundaries not aligned with the background Cartesian mesh can be taken into account by tracing the intersections of each link with the wall (analogously to LBM technology). LW-ACM requires no high-order moments beyond hydrodynamics (often referred to as ghost moments) and no kinetic expansion. Like finite difference schemes, only standard Taylor expansion is needed for analyzing consistency. Preliminary efforts towards optimal implementations have shown that LW-ACM is capable of similar computational speed as optimized (BGK-) LBM. In addition, the memory demand is significantly smaller than (BGK-) LBM. Importantly, with an efficient implementation, this algorithm may be one of the few which is compute-bound and not memory-bound. Two- and three-dimensional benchmarks are investigated, and an extensive comparative study between the present approach and state of the art methods from the literature is carried out. Numerical evidences suggest that LW-ACM represents an excellent alternative in terms of simplicity, stability and accuracy.Comment: 62 pages, 20 figure

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Modelling of the long-term evolution and performance of engineered barrier system

    Get PDF
    Components of the so-called “multiple-barrier system” from the waste form to the biosphere include a combination of waste containers, engineered barriers, and natural barriers. The Engineered Barrier System (EBS) is crucial for containment and isolation in a radioactive waste disposal system. The number, types, and assigned safety functions of the various engineered barriers depend on the chosen repository concept, the waste form, the radionuclides waste inventory, the selected host rock, and the hydrogeological and geochemical settings of the repository site, among others. EBS properties will evolve with time in response to the thermal, hydraulic, mechanical, radiological, and chemical gradients and interactions between the various constituents of the barriers and the host rock. Therefore, assessing how these properties evolve over long time frames is highly relevant for evaluating the performance of a repository system and safety function evaluations in a safety case. For this purpose, mechanistic numerical models are increasingly used. Such models provide an excellent way for integrating into a coherent framework a scientific understanding of coupled processes and their consequences on different properties of the materials in the EBS. Their development and validation are supported by R&D actions at the European level. For example, within the HORIZON 2020 project BEACON (Bentonite mechanical evolution), the development, test, and validation of numerical models against experimental results have been carried out in order to predict the evolution of the hydromechanical properties of bentonite during the saturation process. Also, in relation to the coupling with mechanics, WP16 MAGIC (chemo Mechanical AGIng of Cementitious materials) of the EURAD Joint Programming Initiative focuses on multi-scale chemo-mechanical modeling of cementitious-based materials that evolve under chemical perturbation. Integration of chemical evolution in models of varying complexity is a major issue tackled in the WP2 ACED (Assessment of Chemical Evolution of ILW and HLW Disposal cells) of EURAD. WP4 DONUT (Development and improvement of numerical methods and tools for modeling coupled processes) of EURAD aims at developing and improving numerical models and tools to integrate more complexity and coupling between processes. The combined progress of those projects at a pan-European level definitively improves the understanding of and the capabilities for assessing the long-term evolution of engineered barrier systems
    corecore