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Abstract

The Artificial Compressibility Method (ACM) for the incompressible Navier-
Stokes equations is (link-wise) reformulated (referred to as LW-ACM) by a finite set
of discrete directions (links) on a regular Cartesian mesh, in analogy with the Lattice
Boltzmann Method (LBM). The main advantage is the possibility of exploiting well
established technologies originally developed for LBM and classical computational
fluid dynamics, with special emphasis on finite differences (at least in the present
paper), at the cost of minor changes. For instance, wall boundaries not aligned with
the background Cartesian mesh can be taken into account by tracing the intersec-
tions of each link with the wall (analogously to LBM technology). LW-ACM requires
no high-order moments beyond hydrodynamics (often referred to as ghost moments)
and no kinetic expansion. Like finite difference schemes, only standard Taylor ex-
pansion is needed for analyzing consistency. Preliminary efforts towards optimal
implementations have shown that LW-ACM is capable of similar computational
speed as optimized (BGK-) LBM. In addition, the memory demand is significantly
smaller than (BGK-) LBM. Importantly, with an efficient implementation, this al-
gorithm may be one of the few which is compute-bound and not memory-bound.
Two- and three-dimensional benchmarks are investigated, and an extensive com-
parative study between the present approach and state of the art methods from the
literature is carried out. Numerical evidences suggest that LW-ACM represents an
excellent alternative in terms of simplicity, stability and accuracy.
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1 Introduction

Despite a large variety of mesh generation techniques for numerical solvers
of the fluid dynamics governing equations [1], addressing complex geometries
remains a difficult duty. To this aim, several approaches were proposed for
adapting computational grids to complex geometries by unstructured meshes.
Generating unstructured meshes of high quality though, is a challenging com-
putational task per se, which involves quite advanced algorithms (Rupperts
algorithm, Chews second algorithm, Delaunay triangulation, etc.) [1]. While
those approaches simplify the treatment of boundaries, in turn, each of them
introduces new difficulties such as extra terms in the equations, extra inter-
polations, larger computational molecules, and problems associated with the
transfer of information across grid interfaces. The added complexity makes
code development even more difficult and increases computation time [2], with
an additional risk that those algorithms may not lead to an acceptable solu-
tion.

An alternative approach which has attracted an increasing interest in recent
years makes use of Cartesian grids for all cells with the exception of those that
present intersections with boundaries, which are thus truncated according to
the shape of the boundary surface. The advantages of Cartesian grids can be
retained for all cells in the bulk fluid, and a special treatment is only reserved
to boundary cells. On the contrary, cells fully outside the flow can be simply
ignored during computations [2]. In the literature, this approach is typically
referred to as the “embedded boundary method”, the “Cartesian grid method”
or the “cut-cell method” [3, 4, 5, 6, 7]. Clearly, the challenging point is to make
the method accurate in dealing with curved and planar boundaries transversal
to the grid, even though such boundaries are conveniently approximated in a
staircase fashion. More specifically, after determining the intersection between
the Cartesian grid and a boundary, cells whose center lies in the fluid are
reshaped by discarding their part belonging to the solid wall, while pieces of
cut cells with the center in the solid are absorbed by neighboring cells [5]. This
results in the formation of control-volumes which are trapezoidal in shape.

Classical approaches to the incompressible limit of Navier-Stokes equations re-
quire (a) dedicated techniques for solving a pressure Poisson equation in order
to take advantage of the underlying structured nature of the mesh and thus
speed-up convergence [5]. Moreover, (b) compact multi-dimensional polyno-
mial interpolating functions are used for obtaining a second-order accurate
approximation of the fluxes and gradients on the faces of the trapezoidal
boundary cells from available neighboring cell-center values [5]. Recent de-
velopments to this also follows a similar approach [6, 7].

Both (a) the need of a dedicated solver for the pressure Poisson equation and
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(b) the use of compact multi-dimensional interpolations, can be overcome by
the lattice Boltzmann method (LBM) [8], while preserving the main features
of the Cartesian cut-cell method for mesh generation and boundary treatment.
However, this comes at a price of dealing with specific features inherited from
the kinetic theory of gases, which are unessential as far as the continuum
description of incompressible Navier-Stokes equations is the only concern.

For this reason, we propose a novel formulation of the artificial compressibility
method (ACM), which retains the convenient features of LBM, namely (a)
the artificial compressibility and (b) the link-wise formulation based on the
theory of characteristics, but concurrently gets rid of unessential heritages of
the kinetic theory of gases.

Similarities between LBM and ACM [9] are sometimes reminded in the litera-
ture. It is well known indeed that the Chapman-Enskog expansion of the LBM
updating rule delivers the governing equation of ACM: the artificial compress-
ibility equations (ACE). The latter consist of the same momentum equations
as the incompressible Navier-Stokes equations (INSE), in addition to an arti-
ficial continuity equation including pressure time derivative. ACE can be also
recovered by the more systematic expansion such as the Hilbert method under
diffusive scaling [10].

The lattice kinetic scheme (LKS) [11] (a variant of LBM) also shows similar-
ities with ACM at the level of computer programming, despite the fact that
the former deals with distribution functions of gas molecules, while the latter
only with hydrodynamic (macroscopic) variables.

For a special value of the relaxation parameter in the LBM updating rule,
an updated value of the distribution function depends only on the previous
equilibrium function at an arbitrary mesh point in the stencil. Since equilibria
are in turn function of macroscopic variables only, the LKS updating rule
can be immediately recognized as a kind of finite difference scheme, acting on
hydrodynamic variables. As a result, the moment system of LKS delivers a
variant of ACM. Recently, taking advantage of the similarities between LBM
and ACM, the latter was reformulated as a high order accurate numerical
method (fourth order in space and second order in time) [12].

Motivated by the common belief that an important reason of success of the
LBM (in particular MRT-LBM [13]) is its remarkable robustness for simulating
the various complex flows, the stability of the revived ACM has been further
enhanced [14].

In this paper, in an attempt of making ACM even more similar to LBM, we
propose yet a new formulation of ACM referred to as link-wise ACM (LW-
ACM) in the following text. For the sake of completeness, we summarize both
the main features of the revived ACM [12, 14], still valid for the present LW-
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ACM, and the additional advantages due to a link-wise formulation.

(1) ACM deals with macroscopic variables only, thus offering the opportu-
nity of exploiting all the pre-existing finite-difference (FD) technologies:
This is, for instance, a clear advantage when imposing inlet and outlet
boundary conditions. On the contrary, LBM needs to account for nonhy-
drodynamic quantities (sometimes called ghost quantities) which, though
may not have direct impact on the hydrodynamic behavior, they can
still be responsible of numerical instabilities [15]. Unfortunately, owing
to nonlinearities, there are no clear and general recipes yet, on how to
optimally design ghost quantities with desired stability properties. As
far as the popular compact stencils are concerned, such as D2Q9, D3Q15
and D3Q19 [16] with no special corrections, LBM ghost quantities remain
numerical artifacts: Positive effects of such quantities for enhancing sta-
bility of usual FD schemes are still far from being clearly demonstrated.
ACM fully overcomes this issue, focusing instead on the minimum set of
information for incompressible fluid dynamics.

(2) Similarly to LBM, ACM posses the ability of computing transient solu-
tions of incompressible Navier-Stokes equations (INSE), without resorting
to a Poisson equation for pressure. The underlying idea, directly inspired
by the asymptotic analysis of LBM schemes, is to multiply the pressure
time derivative of artificial continuity equation by a mesh-dependent pa-
rameter. In this way, the numerical Mach number, which is a mere numer-
ical artifact for INSE (rigorously valid in the limit of vanishing Mach num-
ber) is linked to the mesh spacing. Higher accuracy than LBM schemes
can be also achieved by exploiting the asymptotic behavior of the solution
of the artificial compressibility equations for small Mach numbers [12].

(3) ACM can use different meshing techniques. For example, it is possible to
use simple lattice structures, namely Cartesian structured meshes, even-
tually recursively refined like those also used by LBM, or it can be even
formulated in a finite-volume fashion including unstructured body-fitted
meshes. In the latter case, the same comments discussed at the beginning
of this section about the computational overhead for generating unstruc-
tured meshes hold as well. On the other hand, adopting simple lattice
structures is not so straightforward as in LBM: The wall treatment de-
pends on the dimensionality of the problem (namely the look-up table for
discriminating wall boundary conditions in 2D is different from the one in
3D). Previous problem can be overcome by LBM thanks to the link-wise
formulation. A “link” is a generic direction identified by a discrete veloc-
ity of the lattice and coincides with one of the characteristics along which
advection is performed (consistently with the method of characteristics –
MOC). Such a numerical scheme based on a finite set of links can cope
with a complex boundaries by (a) identifying the intersections of each
link with the wall and (b) updating the variable corresponding to such a
link by a local rule. The local rule is always the same and the intersec-
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tions can be computed once for all during pre-processing. The previous
procedure easily applies to any orientations of the wall with respect to the
lattice, as well as to any dimensions. In this paper, the above advantages
of LBM are made available to ACM.

(4) ACM deals with the minimum number of fields describing incompressible
fluid dynamics: D+1, where D is the physical dimension of the problem.
On the other hand, LBM deals with discrete distribution functions fi,
which are as many as the lattice velocities Q. LBM has thus a memory
overhead due to: D+1<Q. Between these two sets of variables, there is
a simple connection: Local equilibria f

(e)
i (Q variables) can be computed

by means of macroscopic quantities only (D+1 variables). Introducing

a larger set of variables f
(e)
i may seem a redundant and useless arti-

fact. However, this work aims at demonstrating that formulating ACM
in terms of f

(e)
i offers advantages as well. In particular, as far as the updat-

ing rule of the algorithm is similar to LBM, it is possible (eventually with
minor changes) to take advantage of most of LBM technology. For exam-
ple, link-wise ACM can also be formulated in terms of local equilibrium
f
(e)
i and this enables a convenient treatment of complex moving bound-
aries typical of the LBM (see next). In conclusion, link-wise ACM has
two possible (and fully equivalent) formulations: (a) in terms of macro-
scopic variables like standard ACM (capable of exploiting pre-existing FD
technology) and (b) in terms of local equilibrium (capable of exploiting
pre-existing LBM technology).

This paper is organized in sections as follow. The link-wise artificial compress-
ibility algorithm for incompressible isothermal fluid dynamics is introduced In
Section 2.1, where some classical benchmarks are presented (isothermal Cou-
ette flow, generalized Green-Taylor vortex flow and Minion & Brown flow) as
well. In Section 2.6 the link-wise wall boundary conditions are discussed, in-
cluding moving and complex walls, and some numerical tests are presented (2D
lid driven cavity flow, 3D diagonally driven cavity flow and Circular Couette
flow). Finally, Section 3 reports some concluding remarks.

2 Link-wise Artificial Compressibility Method

2.1 The main algorithm: Link-wise formulation

The Boltzmann equation is the fundamental equation in kinetic theory of
gases, describing time evolution of the distribution function of gas molecules as
a function of time, space coordinates, and molecular velocity. The Bhatnagar-
Gross-Krook (BGK) model equation inherits the main features of the original
Boltzmann equation, with the fluid-dynamic description of the BGK solution
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for small Knudsen numbers being much simpler to obtain. Hence, owing to a
remarkably less demanding effort, it come advantageous the employment of the
BGK equation at the heart of kinetic methods for solving INSE. A well known
drawback of the BGK equation is that the recovered Prandtl number is unity,
while the original Boltzmann equation yields a value near to 2/3. However,
since most of the LBM schemes do not consider the energy equation, the issue
of inaccurate thermal diffusivity can be often neglected. At the same time, it
is allowed to employ the isothermal BGK with a constant collision frequency
for this purpose [17]. Hence isothermal BGK will be our starting point in the
following derivation. A crucial ingredient of any lattice Boltzmann scheme is
a finite set of microscopic velocities, called lattice. The generic lattice velocity
is identified by the subscript i, where 0 ≤ i ≤ Q − 1. The LBM simulates
the time evolution of a weakly compressible gas flow in nearly continuum
regime by solving a kinetic equation on the lattice and yields the solution
of the incompressible Navier-Stokes equation as its leading order. Hence, the
relaxation frequency in the BGK equation can be expressed as a function of
the kinematic viscosity ν: In particular, the relaxation frequency is set equal
to c2/ν, where c is the lattice sound speed. The dimensionless form of the
simplified BGK equation on a lattice takes the form

∂f ∗∗
i

∂t̂
+ v̂i · ∇̂f ∗∗

i =
c2

ν

(

f
(e)
i − f ∗∗

i

)

, (1)

where x̂, t̂, and v̂i are the (dimensionless) space coordinates, time, and molec-
ular velocity components, respectively; f ∗∗

i is the distribution function of gas

molecules for the i-th velocity on the lattice; f
(e)
i is the equilibrium distribution

function. The distribution function f ∗∗
i is defined at a discrete set 2 of spatial

points x̂ = x/∆x, where ∆x is the dimensionless mesh spacing, ∆x = ∆x′/L,
with ∆x′ the mesh spacing in physical units and L the characteristic length
scale of the flow field. Similarly, time levels are defined as t̂ = t/∆t, where
∆t is the dimensionless time step, ∆t = ∆t′/(L/U), with ∆t′ the time step
in physical units and U a characteristic flow speed. The Q lattice velocities
v̂i are defined according to the considered scheme [16]. All points x̂ form a
regular lattice such that x̂− v̂i belongs to the lattice, regardless of x̂ and v̂i.

The quantities f
(e)
i are local functions of density ρ =

∑

i fi and momentum

ρu =
∑

i v̂ifi computed at x̂ and t̂, namely f
(e)
i = f

(e)
i (ρ,u) (see Appendix A

for some examples). The quantities f
(e)
i are designed in order to recover the

incompressible isothermal fluid dynamics [16]. In particular, recovering in-

compressible Euler equations requires that
∑

i f
(e)
i = ρ and

∑

i v̂if
(e)
i = ρu, i.e.

conservation of hydrodynamic moments, and
∑

i v̂iv̂if
(e)
i = Π(e) = ρuu + p I,

2 If not evident otherwise, we use “hat” notation for lattice quantities expressed by
means of integer values and “prime” notation for quantities expressed in physical
units.
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with p function of density only (isothermal case): p = c2 ρ. Further constraints
can be found by asymptotic analysis (see Appendix B for details). However
consistency leaves some degrees of freedom in designing these functions, which
can be used for improving stability (one possible strategy is discussed in Ap-
pendix C). In the following, it will be convenient to consider separately the

odd parts of equilibria, namely the quantities f
(e,o)
i , defined as

f
(e,o)
i (ρ,u) =

1

2

(

f
(e)
i (ρ,u)− f

(e)
i (ρ,−u)

)

. (2)

Let us suppose that ν � 1: then it is possible to find an approximated solution
of (1) by singular regular expansion, where:

f ∗∗
i = f

(e)
i − ν

c2
v̂i · ∇̂f (e)

i +O(ν2). (3)

Introducing the above approximation in the advection term of Eq. (1), it yields

∂f ∗∗
i

∂t̂
= −v̂i · ∇̂f (e)

i +
ν

c2
(v̂i · ∇̂)2f

(e)
i +

c2

ν

(

f
(e)
i − f ∗∗

i

)

+O(ν2). (4)

Here, the goal is to derive an algorithm formulated in terms of only hydrody-
namic quantities, i.e. the statistical macroscopic moments of f ∗∗

i corresponding
to microscopic quantities conserved by the collisional operator (right hand side

of Eq. (1)). In particular, the local equilibrium f
(e)
i is defined such that it has

the same hydrodynamic quantities of f ∗∗
i . Hence, as far as the computation

of the hydrodynamic quantities is concerned, the collisional operator in (4) is
unessential. Removing the latter term determines a modification in the model
equation, though there is no effect on the hydrodynamic quantities. Let us
define a new model equation by removing the collisional term and neglect-
ing terms O(ν2) in (4), which can be re-formulated with respect to the new
distribution function f ∗

i as follows:

∂f ∗
i

∂t̂
= −v̂i · ∇̂f (e)

i +
ν

c2
(v̂i · ∇̂)2f

(e)
i . (5)

Clearly the previous one is the Fokker-Planck equation, with drift coefficient
equal to 1 and diffusion coefficient equal to ν/c2. The above model equation
(5) can be recast in the equivalent form

∂f ∗
i

∂t̂
= −η2

(

v̂i · ∇̂f (e,e)
i − η4/η2 (v̂i · ∇̂)2f

(e,e)
i

)

−η1
(

v̂i · ∇̂f (e,o)
i − η3/η1 (v̂i · ∇̂)2f

(e,o)
i

)

,

(6)
where the odd part of the equilibrium distribution function is defined by (2),

while the even part is f
(e,e)
i = f e

i − f
(e,o)
i , η1 = η2 = 1 and η3 = η4 = ν/c2.

Recalling that

v̂i · ∇̂f (e,o/e)
i − 1

2
(v̂i · ∇̂)2f

(e,o/e)
i ≈ f

(e,o/e)
i (x̂− v̂i, t̂)− f

(e,o/e)
i (x̂, t̂), (7)
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we modify once more the model equation by setting η1 = 2 ν/c2 and η4 = 1/2
(while other parameters remain unchanged, namely η2 = 1 and η3 = ν/c2).
By doing so, η4/η2 = η3/η1 = 1/2 which enables to use the approximation (7).
By means of the above set of parameters, Eq. (6) becomes

∂f ∗
i

∂t̂
= −

(

f
(e,e)
i (x̂, t̂)− f

(e,e)
i (x̂− v̂i, t̂)

)

− 2
ν

c2

(

f
(e,o)
i (x̂, t̂)− f

(e,o)
i (x̂− v̂i, t̂)

)

.

(8)
As common in LBM, we apply the forward Euler rule for approximating first
order time derivatives:

f ∗
i (x̂, t̂+1) = f ∗

i (x̂, t̂)−
(

f
(e,e)
i (x̂, t̂)− f

(e,e)
i (x̂− v̂i, t̂)

)

−2
ν

c2

(

f
(e,o)
i (x̂, t̂)− f

(e,o)
i (x̂− v̂i, t̂)

)

.

(9)
As far as the computation of hydrodynamic quantities is concerned, the first
term of the right hand side in (9) can be substituted by f

(e)
i (x̂, t̂) (they

have same hydrodynamic moments). The final model equation can thus be
re-formulated in terms of the distribution function fi as follows

fi(x̂, t̂+1) = f
(e)
i (x̂, t̂)−

(

f
(e,e)
i (x̂, t̂)− f

(e,e)
i (x̂− v̂i, t̂)

)

−2
ν

c2

(

f
(e,o)
i (x̂, t̂)− f

(e,o)
i (x̂− v̂i, t̂)

)

,

(10)
or equivalently

fi(x̂, t̂+1) = f
(e)
i (x̂− v̂i, t̂)+

(

1− 2
ν

c2

)

(

f
(e,o)
i (x̂, t̂)− f

(e,o)
i (x̂− v̂i, t̂)

)

. (11)

In order to fix ideas, let us consider a local equilibrium such that c2 = 1/3 (see
Appendix A for details). Moreover, as common in LBM, the kinematic viscos-
ity can be expressed in terms of the relaxation frequency ω of the numerical
scheme (see Appendix B for details), namely

ν =
1

3

(

1

ω
− 1

2

)

. (12)

Substituting Eq. (12) into Eq. (11) yields the Link-Wise re-formulation of the
Artificial Compressibility Method (LW-ACM) for the incompressible isother-
mal fluid dynamics, expressed by the following system of algebraic equations

fi(x̂, t̂+ 1) = f
(e)
i (x̂− v̂i, t̂) + 2

(

ω − 1

ω

)

(

f
(e,o)
i (x̂, t̂)− f

(e,o)
i (x̂− v̂i, t̂)

)

,

i = 0, . . . , Q− 1

(13)

where Q is the number of lattice velocities.

A clear advantage of the above scheme is that all quantities appearing in
Eqs. (13) and (2) only depends on known (equilibrium) functions at a mesh
node and its close neighbors. This introduces a significant simplification in the
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treatment of boundary conditions, which can be directly borrowed from finite-
difference technology (see e.g. the isothermal Couette flow test case reported
in Section 2.5.1).

Similarly to LBM, the algebraic equations (13) can be implemented in three
subsequent steps (“pull” formulation), namely pre-combining, streaming and
post-combining,

f ∗
i (x̂− v̂i, t̂) = f

(e)
i (x̂− v̂i, t̂)− 2

(

ω − 1

ω

)

f
(e,o)
i (x̂− v̂i, t̂), (14a)

f ∗∗
i (x̂, t̂+ 1) = f ∗

i (x̂− v̂i, t̂), (14b)

fi(x̂, t̂+ 1) = f ∗∗
i (x̂, t̂+ 1) + 2

(

ω − 1

ω

)

f
(e,o)
i (x̂, t̂). (14c)

Pre- and post-combining are local processes involving arithmetic operators,
whereas streaming alone takes care of data exchange among the nearest neigh-
bors of an arbitrary cell.

The implementation strategy given by Eqs. (14) admits a straightforward
inclusion of external forcing, by considering the additional step

f force
i (x̂, t̂+ 1) = fi(x̂, t̂+ 1) + f

(e,o)
i

(

ρ(x̂, t̂),g(x̂, t̂)
)

, (15)

where g = (gx, gy)
T is the external acceleration. The previous correction is

local: Similarly to finite-difference schemes, the external forcing is applied
to the point where it is supposed to act. The functions f

(e,o)
i are used for

convenience (they are already known), for ensuring that the force only applies
to the momentum equations.

We notice that, the same simple procedure cannot be applied to the lattice
Boltzmann method, because a correction to the distribution function may af-
fect the dynamics of the higher order moments as well. Consistent treatment
of the forcing typically involves some special (non-trivial) techniques [18]. De-
tails on the effects due to the correction (15), by asymptotic analysis, are
reported in the Appendix B. Imposing a given physical acceleration ḡ within
a flow, requires the tuning of numerical acceleration g, namely g = ε3 ḡ (in
case of diffusive scaling). The same approach can be adopted to implement
mass sources in the numerical scheme.

2.2 The main algorithm: Finite difference formulation

Since the right hand side of Eq. (13) only depends on the equilibrium condi-
tion, which is in turn a function of the macroscopic quantities, it is possible to
provide a finite difference formula, expressed in terms of macroscopic quanti-
ties, which is fully equivalent to (13). As commonly done in the finite-difference
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literature, we denote by {P} the set of computational points surrounding a
generic point P (otherwise stated, the generic computational stencil). All the
quantities are intended computed at the generic time level t̂, while the su-
perscript “+” denotes a quantity at the next time level t̂ + 1. The unknown
quantities are given by the velocity components u = (u, v)T and the pres-
sure p. Hence the equivalent finite-difference formulas must provide a way to
compute u+P , v

+
P and p+P namely

u+P = fu
(

u{P}, v{P}, p{P};ω
)

, (16a)

v+P = fv
(

u{P}, v{P}, p{P};ω
)

, (16b)

p+P = fp
(

u{P}, v{P}, p{P};ω
)

. (16c)

See Appendix D for a complete example based on the D2Q9 lattice [16]. The
same finite-difference counterpart can be found for the Lattice Kinetic Scheme
(LKS) [11], recovered in case ω = 1, but Eq. (13) is also valid for tunable ω
and consequently tunable viscosity ν (in particular, for high Reynolds number
flows). Moreover, the same derivation can be done for the FD-LKSν proposed
in [17], but Eq. (13) is formulated only along a particular lattice link and hence
it can also take advantage of most of LBM technology (which is link-wise).

(1) Availability of two alternative formulations of the same numerical scheme
is very convenient. For example, it is possible to commute (even dynami-
cally) between the formulation based on Eq. (13) and that based on Eqs.
(16), depending on the best option in dealing with the local boundary
conditions.

(2) Similarly to conventional ACM [17, 12, 14], the formulation based on Eqs.
(16) can be improved by introducing a semi-implicit step for updating the
pressure field. Essentially the step in Eq. (16c) can be substituted by

p+P = fp
(

u+{P}, v
+
{P}, p{P};ω

)

, (17)

using the already updated velocity field.
(3) The finite-difference formulation allows to choose different relaxation pa-

rameters ω for different (macroscopic) equations. Let us define ωu the
relaxation frequency used in Eq. (16a) and (16b), while let us define
ωp 6= ωu the relaxation frequency used in Eq. (16c). Consequently two
kinematic viscosities follow, namely ν = ν(ω) and νp = ν(ωp), where the
function ν = ν(ω) is given by Eq. (12). By introducing these relaxation
frequencies in Eqs. (16) and applying Taylor expansion to such novel
expressions (see Appendix B for details), the equivalent system of macro-
scopic equations can be recovered in the continuum limit (ε → 0). The
momentum equation involves the kinematic viscosity ν (as previously),
while the pseudo-compressibility term in the artificially compressible con-
tinuity equation, namely the first term in Eq. (B.16), becomes propor-
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tional to ε2/νp, namely

ε2

6ρ0νp

∂ρ̄

∂t
+∇ · ū = O(ε4/ν2p). (18)

For high Reynolds number flows, where ν � 1, replacing ν with νp in
the previous equation helps to improve the accuracy in recovering the
incompressible limit of Navier-Stokes equations. In fact νp can be chosen
larger than ν such that the diverge-free condition for the velocity field
can be accurately satisfied even on moderately refined meshes, i.e. meshes
with moderately small grid spacing ε.

2.3 Physical and lattice units

Table 1
Conversion table from lattice to physical units in case of diffusive scaling, i.e. ∆x = ε
and ∆t = ε2 with ε = ∆x/L = 1/N and N the number of mesh points along one
axis. Quantities in lattice units are readily computed in the code, but they are
mesh-dependent. Corresponding quantities in physical units are mesh-independent
and can be computed during post-processing. In the text, in case of ambiguity,
quantities in physical units are denoted by over-bar.

Quantity Lattice units Physical units

Pressure p = 1/3
∑

i fi p̄ = (p− p0)/ε
2

Velocity u =
∑

i v̂ifi/
∑

i fi ū = u/ε

Force by Eqs. (35, 36) F =
∑

i∈S v̂ipi ∆F̄ = (F − F0)/ε
2

Torque by Eqs. (46, 47) T =
∑

i∈S (x̂− x̂c)× pi T̄ = T
Temperature T =

∑

i gi T̄ = T

Let us assume ∆x = ε and ∆t = ε2 (diffusive scaling), with ε = ∆x/L = 1/N
and N the number of mesh points. As reported in the Appendix B, asymptotic
analysis [10] of (13) and (2) shows that, in the limit of vanishing grid spacing,
ε� 1, the quantities p̄ = (p−p0)/ε2 = (p′−p′0)/U2 and ū = u/ε = u′/U satisfy
the incompressible isothermal Navier-Stokes equations, with viscosity given by
Eq. (12). The subscript 0 denotes mean value over the whole computational
domain. Here, we stress that for a correct use of the proposed algorithm, it
is important to consider a proper post-processing of the numerical results. To
this respect, we notice that, for instance, the velocity field u =

∑

i v̂ifi/
∑

i fi
is mesh-dependent: u = u (ε), with u going to zero as the mesh spacing ε
vanishes. As a result, u is not the proper choice for describing the velocity
field of incompressible flows: To this aim, instead, the quantity ū = u/ε is
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adopted due to mesh-independence. Similar considerations apply also to other
fields. For consistency with the LBM literature, in this work, the units of
quantities directly based on fi are referred to lattice units, while units of the
corresponding mesh-independent quantities are termed physical units.

For the sake of clarity, the complete set of formulas for converting units of
all relevant variables are reported in Table 1. We stress that finite-difference
formulation of the proposed method can be carried out directly in physical
units, thus avoiding the above post-processing. Nevertheless, here we prefer
to keep the above post-processing for consistency with the Lattice Boltzmann
community.

Finally, for consistency, accurate solution of INSE requires ε2/ν � 1, which
is a criterion valid for the LBM as well (see Appendix B for details and the
following discussion about the Minion & Brown flow in Section 2.5.3). On the
other hand, for stability, numerical evidences suggest that LW-ACM is stable
for 1 ≤ ω < 2, which corresponds only to half of the stability range for the
relaxation frequency of the LBM. The attempts to overcome this limitation
by considering also the local equilibrium in the down-wind computational
node along the same link identified by the lattice velocity v̂i, i.e. x̂ + v̂i,
did not succeed so far. The reason may be due to the fact that, as far as
only hydrodynamics is concerned, stability requires “up-wind” schemes, which
discretize hyperbolic partial differential equations by using differencing biased
in the direction of lattice velocities. In particular, the quantity fi(x̂, ·) streams
along the link i-th with the lattice velocity v̂i and hence the corresponding
up-wind node is x̂ − v̂i. Remarkably, Eq. (13) determines the dynamics of
the quantity fi(x̂, ·) by only (equilibrium-based) information collected in the
generic node x̂ and in the up-wind counterpart x̂− v̂i.

In order to understand the consequences of the reduced stability range, let us
introduce the Reynolds number Re = LU/ν ′, namely

Re =
Ma/Kn

1/3 (1/ω − 1/2)
, (19)

where Kn ≡ ∆x is the numerical Knudsen number, which is the dimensionless
grid spacing, and Ma = U/(∆x′/∆t′) is the numerical Mach number, which is
the parameter controlling the magnitude of the artificial compressibility (see
Appendix B for details). The Reynolds number is dictated by the physical
problem under investigation, while the right hand side of the previous expres-
sion involves only numerical parameters, namely ω, Ma and Kn. In particular,
as done also in LBM, for high Reynolds number flows in LW-ACM, it is conve-
nient to chose ω . 2 and Ma ∼ Kn. On the other hand, the reduced stability
range, i.e. 1 ≤ ω < 2, induces a slight change in the parameters of LW-ACM
for low Reynolds number flows. In fact, for soft-matter systems and/or in
micro-scale flows solved by LW-ACM, it is convenient to chose ω & 1 and
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Ma � Kn (fine time stepping). However it is important to point out that this
drawback is a consequence of the link-wise formulation constraint: No such
limitation appears in the original ACM [12, 14].

2.4 Optimized computer implementation

In the following, we discuss a few strategies useful for reducing the computa-
tional time, thanks to an optimized implementation of the algorithm (14) and
(16). Similarly to LBM, the performance characteristics of single-processor
implementations depends on the effect of different data layouts [19] (multi-
processor optimization strategies are not considered in the present work, see
Ref. [20]).

First of all, the streaming step should not overwrite data required for updating
neighboring sites. A usual way to work around the resulting data dependencies
owing to the propagation step is the use of two arrays (one for the current and
the other for the next time step), and toggling between them [19]. It is also
possible (and even more efficient) using a single array, with proper ordering
of the sequence of streamed lattice directions, though this may become cum-
bersome when dealing with wall boundary conditions. The best data layout
requires that the distribution functions of the current cell are contiguously
located in memory (e.g. by using the first index in Fortran, which addresses
consecutive memory locations due to column major order [19]).

Secondly, to reduce the memory traffic, it is important that pre-combining,
streaming and post-combining are executed in a single loop and not indepen-
dently of each other in separate loops or routines, similarly to LBM [19]. This
goal can be easily accomplished by reformulating Eqs. (14) in term of f ∗

i : In
fact, the hydrodynamic moments of f ∗

i are not exactly equal to the hydrody-
namic quantities, but the former are known functions of the latter. Hence it
is convenient to compute directly f ∗

i , which are ready to be streamed, and to
extract the hydrodynamic quantities from f ∗

i . This simplifies the implemen-
tation of a single updating loop through all computational sites at each time
step.

Finally, it is important to reduce as much as possible the number of floating
point operations and memory accesses per updated site. In LBM, the D3Q19
lattice (see Appendix A for details) with BGK collision operator requires about
180-200 floating point operations per cell and time step as well as reading
19 floating point values and writing to 19 different memory locations [19].
Roughly half of the floating point operations and half of the memory accesses
are required by the D2Q9 lattice.

Let us considering the D2Q9 lattice and the LBM-style formulation of LW-

15



ACM, as dictated by Eqs. (14), with the optimization tricks reviewed above.
Such an implementation of LW-ACM requires 115 floating point operations
(+28% compared to BGK-LBM) and 26 memory accesses (+44%) per cell.
However, in the following, only the computational performances of LW-ACM
in the FD formulation are further investigated, and its superior capabilities
are demonstrated (compared to BGK-LBM). From a computational point

Table 2
Performance test of the link-wise ACM (by FD formulation) vs. BGK-LBM, based
on the Minion & Brown flow [22] with Re = 10, 000 in the time range t ∈ [0, 1], solved
by a mesh with 512×512 nodes/sites and performing 12,800 iterations (Ma = 0.04).
Both codes are serial and use double precision. The considered workstation has
Intel R© CoreTM i7-920 (Bloomfield, 4 physical cores, 8MB L3) with clock rate
2.67GHz (due to TurboModeTM actually running at 2.80 GHz) and 12 GB of DDR3
memory (1333 MHz). The used Fortran compiler is Intel R©version 11.1up8 (opti-
mization level option “-O3”) and the operative system is Ubuntu Linux i10.04 LTS
(64 bit). The million fluid lattice cell updates per second (MLUPS) are reported for
both methods.

Elementary stencil Link-wise ACM by FD formulation BGK-LBM

# of additions/subtractions 80 70

# of multiplications 60 40

# of floating point operations 140 110

# of actual data (t) 27 9

# of updated data (t+ 1) 3 9

external size of the stencil 3×3×3 3×3×9

MLUPS 29.43 27.28

of view, it may appear that formulas (16) are not suitable for an efficient
implementation, since they involve many floating point operations. However,
because they are derived from Eq. (13), it is possible to simplify them using
(by-hand) common subexpression elimination (CSE) [20]. See Appendix D
for a complete example based on the D2Q9 lattice [16]. Moreover, the same
implementation tricks discussed above can be properly applied here.

First of all, the memory storage required by link-wise ACM is exactly one
third of that of BGK-LBM (only hydrodynamic variables are needed). At
each time step, it is enough to go through all computational cells/sites once
and this can be done straightforwardly, because updating formulas are al-
ready expressed in terms of hydrodynamic variables. Finally, for locating the
macroscopic quantities (p, u, v) contiguously in memory, it is possible to col-
lect them in a single array and to use the first index for addressing them. This
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leads to an optimized FD-style implementation of Eqs. (16). On the D2Q9
lattice, a comparison between the FD-style implementation of link-wise ACM
and BGK-LBM is reported in Table 2. Link-wise ACM requires more floating
point operations but less memory accesses than BGK-LBM.

For clarity, let us analyze the updating process at each time. The external size
of the stencil of LW-ACM is smaller than the one of LBM (3×3×3 instead of
3×3×9 respectively, where 3×3 is due to the D2Q9 lattice, 3 is the number of
hydrodynamic quantities and 9 the number of discrete distribution functions).
During the generic updating process, if the cache is large enough to hold
3 “lines” (or 3 planes in 3D) of the computational domain, then updating
the hydrodynamic quantities in a cell requires the loading of only the actual
values of a further cell in the cache (3 loads). In the worst case, updating the
hydrodynamic quantities in a cell requires the loading of the actual values of
three additional cells in the cache: This amounts to 9 loads from actual array
(3 physical quantities from the current, previous and next “line”). In any case,
3 write-allocate transfers from main memory to cache and 3 stores to get the
updated array from cache back to main memory are always required. This
leads to 9–15 in total per nodal updates.

On the other hand, BGK-LBM requires 9 loads from the actual array (discrete
distribution function), 9 write-allocate transfers and 9 stores to the updated
array, leading to 27 memory transfers. For BGK-LBM, there is no reuse of data
from cache because every discrete distribution function is only used once. As
the number of memory transfers usually affects the performance more than
the number of floating point operations, the performance of link-wise ACM is
superior than that of BGK-LBM. Some performance data are reported in Table
2. FD-style implementation of link-wise ACM was able to achieve 29.43 million
fluid lattice cell updates per second (MLUPS), which is the standard way to
measure the performance of LBM implementations [19]. For the previous test,
this value is roughly 8% faster than BGK-LBM.

Remark: In our opinion, there is still room for improvement according to the
performance model (based on assuming either infinitely fast memory or in-
finitely fast compute units). For example, the numerical code for solving the
2D lid driven cavity test case achieved 32.3 MLUPS and this was essential for
simulating very high Reynolds number flows. Importantly, with an efficient im-
plementation, this algorithm may be one of the few which is compute-bound
and not memory-bound. The latter observation is of particular interest for
General-Purpose computing on Graphics Processing Units (GPGPU).
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2.5 Simple boundary conditions

For sake of simplicity, numerical tests with simple boundary conditions are
discussed first. Here, by simple boundary conditions, we mean either finite-
difference boundary conditions (isothermal Couette flow) or periodic (gen-
eralized Green-Taylor vortex flow and Minion & Brown flow). More general
boundary conditions taking advantage of the LBM technology will be discussed
in Section 2.6.

2.5.1 Isothermal Couette flow

In this section, we consider the plane Couette flow where a viscous fluid is
confined in a gap between two parallel plates, with the one moving in its own
plane with respect to the other. Here, two configurations are simulated by
the present LW-ACM method on several meshes: Couette flow without wall
injection (referred to as Test 1), and Couette flow with wall injection (referred
to as Test 2). In the latter configuration (Test 2) fluid is injected from the
bottom wall into the gap and extracted from the top wall with a constant
orthogonal velocity v̄0. At the stationary condition, the above configurations
admit the following exact solutions:

ū(y) =
1

2
ûL

(

1 +
y

L

)

+ ū0

(

1− y2

L2

)

, (Test 1), (20)

ū(y) = ūL

(

exp(yRe/L)− 1

exp(Re)− 1

)

, (Test 2), (21)

where the Reynolds number Re is the main control parameter, L is a character-
istic length depending on the considered test and ν is the kinematic viscosity.

For Test 1, L is half the gap height, while ū0 represents a velocity based on
the imposed pressure gradient ∇p̄:

ū0 =
L2∇p̄
2ρν

,

ūL is the velocity of the top wall ūL = ū(y = L) and ρ is the density. The
bottom wall is assumed stationary: ū(y = −L) = 0.

In case of wall injection (Test 2), L is the gap height, the Reynolds number Re
in (20) is defined on the basis of the injection velocity v̄0, namely Re = v̄0L/ν.
Velocities at the top and bottom walls are: ū(y = L) = ūL and ū(y = 0) = 0,
respectively. In all simulations, no-slip boundary conditions are applied along
the wall by simply imposing the local equilibrium with the desired velocity,
while periodic boundary conditions are adopted at the inlet and outlet.
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Table 3
Convergence analysis for Couette flow without (Test 1) and with (Test 2) wall
injection in case of both diffusive and acoustic scaling.

∆t ∝ ∆x2 (diffusive scaling)

Error L2[ū]

ε ≡ ∆x Ma ∝ ∆t/∆x ν ∝ Re−1 Test 1 Test 2

1/10 3.0× 10−2 3.0× 10−2 1.74× 10−3 4.59× 10−4

1/20 1.5× 10−2 3.0× 10−2 4.49× 10−4 1.21× 10−4

1/40 7.5× 10−3 3.0× 10−2 1.20× 10−4 3.11× 10−5

∆t ∝ ∆x (acoustic scaling)

Error L2[ū]

ε ≡ ∆x Ma ∝ ∆t/∆x = const. ν ∝ Re−1 Test 1 Test 2

1/10 3.0× 10−1 3.0× 10−3 4.27× 10−2 1.05× 10−2

1/20 3.0× 10−1 1.5× 10−3 2.76× 10−2 5.19× 10−3

1/40 3.0× 10−1 7.5× 10−4 1.54× 10−2 2.66× 10−3

First of all, diffusive scaling is considered: This strategy consists in scaling
the velocity field on different meshes, keeping fixed the relaxation frequency
(see Appendix B for details). This scaling ensures second order convergence
in the accuracy, as reported in upper part of Table 3, where the L2 norm of
deviation of numerical results from exact solution (20) is shown. In addition,
acoustic scaling is considered. This strategy consists in tuning the relaxation
frequency on different meshes in order to keep constant the computed velocity
field (see Appendix B for details). This scaling ensures first order convergence
in the accuracy, as reported in the lower part of Table 3.

2.5.2 Generalized Green-Taylor vortex flow

In this section, some numerical results of the Taylor-Green vortex flow are
reported. The latter problem is widely employed as a benchmark for vari-
ous incompressible Navier-Stokes solvers, owing to the existence of a simple
analytical solution. The original problem is characterized by the exponential
decay in time due to viscous dissipation. However, here the original problem is
modified such that it becomes periodic in time by the introduction of a proper
external acceleration ḡ = (ḡx, ḡy)

T to Eq. (B.12), where

ḡx(t, x, y) = sin(x− ū0t) cos(y − v̄0t)(2ν cos t− sin t),

ḡy(t, x, y) = − cos(x− ū0t) sin(y − v̄0t)(2ν cos t− sin t),
(22)
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with ū0 and v̄0 being constants aiming at preventing that the advection term
balances with the pressure gradient. The modified problem admits the follow-
ing analytical solution

ū(t, x, y) = ū0 + sin(x− ū0t) cos(y − v̄0t) cos t,

v̄(t, x, y) = v̄0 − cos(x− ū0t) sin(y − v̄0t) cos t,

p̄(t, x, y) =
1

4
[cos 2(x− ū0t) + cos 2(y − v̄0t)] cos

2 t.

(23)

We solve the above modified problem numerically in the domain Ω = [0 ≤
x ≤ 2π] × [0 ≤ y ≤ 2π] using periodic boundary condition, and (ū0, v̄0) =
(0.3, 0.6). The kinematic viscosity is ν = 0.1. Diffusive scaling is adopted for
all simulations, namely Ma = 2πKn or equivalently ∆t = ∆x2 (see Appendix
B for details).

The L1 error data are reported in Table 4 at t = 60 for link-wise ACM, link-
wise ACM with semi-implicit formulation (see the end of Section 2.1 where
this formulation is presented), standard (second-order) ACM and multiple-
relaxation-time (MRT) LBM. The standard ACM is described in Ref. [12].
In the MRT-LBM [13, 21], the consistent treatment of forcing is based on
Ref. [18]. The time step employed in the LBM computation is the same as
the one of ACM, i.e. Ma = 2πKn or equivalently ∆t = ε2, and the tuning
parameters of MRT are s1 = s4 = s6(= τρ

−1 = τj
−1) = 0, s2(= τe

−1) =
1.63, s3(= τε

−1) = 1.14, s5 = s7(= τq
−1) = 1.92 (see Refs. [21, 18]). All

methods show nearly second-order convergence. Link-wise ACM shows larger
numerical errors than ACM and MRT-LBM. However it must be stressed
that the implementation of forcing in link-wise ACM is straightforward, while
the consistent treatment of forcing in LBM is much more complicated [18].
Moreover in link-wise ACM, spatial operators (gradient and Laplace operator)
do not need to be discretized individually (unlike ACM) but it is enough
to discretize along the generic lattice direction: This makes much easier the
treatment of three-dimensional cases.

2.5.3 Minion & Brown flow

LW-ACM and LBM are characterized by different values of artificial com-
pressibility, leading to a different robustness with respect to under-resolved
simulations. By referring to the pseudo-continuity equation for LW-ACM (see
Eq. (B.16) in the Appendix B), it follows that accurate solution of divergence-
free condition for the velocity field requires: ε2/ν � 1. This is even a more
severe condition than the one of LBM, in case of high Reynolds number flows.
In the following, we further explore this issue, by means of the Minion &
Brown flow.
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Table 4
The L1 norm of the error versus ε ≡ ∆x ≡ Ma/2π at t = 60 in the problem of the
generalized Taylor-Green vortex problem for ν = 0.1.

Link-wise ACM

ε ≡ ∆x Error L1[ū] Error L1[v̄] Error L1[p̄]

π/16 1.69262× 10−2 1.96356× 10−2 3.45590× 10−2

π/32 4.38763× 10−3 4.70793× 10−3 7.91104× 10−3

π/64 1.41952× 10−3 1.50330× 10−3 2.21013× 10−3

Link-wise ACM (semi-implicit, see Section 2.1)

ε ≡ ∆x Error L1[ū] Error L1[v̄] Error L1[p̄]

π/16 1.70353× 10−2 2.02203× 10−2 3.09165× 10−2

π/32 4.41348× 10−3 4.70412× 10−3 6.11065× 10−3

π/64 1.41906× 10−3 1.50227× 10−3 1.73786× 10−3

ACM

ε ≡ ∆x Error L1[ū] Error L1[v̄] Error L1[p̄]

π/16 8.03750× 10−3 1.00313× 10−2 9.70682× 10−3

π/32 1.92844× 10−3 2.47186× 10−3 1.93893× 10−3

π/64 5.64682× 10−4 6.61285× 10−4 4.34911× 10−4

MRT-LBM

ε ≡ ∆x Error L1[ū] Error L1[v̄] Error L1[p̄]

π/16 7.67964× 10−3 8.90307× 10−3 1.67526× 10−2

π/32 1.84928× 10−3 2.17164× 10−3 3.63345× 10−3

π/64 6.12810× 10−4 6.81060× 10−4 1.11633× 10−3

Minion & Brown [22] studied the performance of various numerical schemes
for under-resolved simulations of the 2D incompressible NavierStokes equa-
tions. The relevance of this flow for testing robustness and accuracy of LBM
schemes was first pointed out by Dellar [23]. Minion & Brown considered initial
conditions corresponding to the perturbed shear layer

ū(t, x, y)=











tanh(k(y − 1/4)), y ≤ 1/2,

tanh(k(3/4− y)), y > 1/2,
(24)

v̄(t, x, y)= δ sin(2π(x+ 1/4)), (25)
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in the periodic domain Ω = [0 ≤ x ≤ 1]×[0 ≤ y ≤ 1]. The parameter k controls
the shear layer width, while δ the magnitude of the initial perturbation. The
shear layer is expected to roll up due to Kelvin-Helmholtz instability. With
k = 80, δ = 0.05, and Reynolds number Re = 1/ν = 10000, the thinning shear
layer between the two rolling up vortices becomes under-resolved on a 128×128
grid. Minion & Brown [22] found that conventional numerical schemes using
centered differences became unstable for this under-resolved flow, whereas
“robust” or “upwind” schemes that actively suppress grid-scale oscillations all
produce two spurious secondary vortices at the thinnest points of the two shear
layers at t = 1. Dellar [23] found that, even though it is stable on the previous
mesh, two spurious vortices are generated by the BGK LBM scheme based
on the D2Q9 lattice and with unmodified bulk viscosity. The same author
proposed a way to increase the bulk viscosity for overcoming this problem,
and verified that the same result can be achieved by using MRT-LBM. Along
the same idea, alternative formulations for modifying the dissipation of the
LBM schemes have been proposed [24, 25].

Link-wise ACM is stable for the previous test, but the velocity field is not
accurate enough due to numerical viscosity. For ε = 1/128 and ν = 1/10000,
indeed, the term that multiply the pressure time derivative in the pseudo-
continuity equation (Eq. (B.16) in the Appendix B), namely ε2/ν, reaches
the value of 0.61, thus preventing an accurate fulfillment of the diverge-free
condition for the velocity field. In the following, two improvements are worked
out for circumventing the above problem.

First, we apply the strategy discussed at the end of Section 2.2, introducing
a numerical fictitious viscosity νp = 170 ν, with the corresponding relaxation
frequency ωp computed by means of (12). The relaxation frequency ωp is used
in the macroscopic updating rule (16c). Hence, the pseudo-compressibility
term in the continuity equation, namely the first term in Eq. (B.16), becomes
proportional to ε2/νp = 0.0036 � ε2/ν and this improves the quality of the
solution. The vorticity at t = 1 is reported in Figure 1, where the velocity field
looks much better, but the two spurious secondary vortices at the thinnest
points of the two shear layers are still present (similarly to BGK-LBM).

The second improvement follows the idea to increase the bulk viscosity ξ, as
suggested by Dellar [15]. As discussed in Appendix C, instead of the standard

f
(e)
i (see Eq. (A.1) in the Appendix A) in Eq. (13), we consider a modified

set of functions, namely f
(e∗)
i = f

(e∗)
i (γ), where γ is a free parameter related

to the bulk viscosity ξ: ξ = 2ρ0ν (1 + 2 γ). This strategy enables to increase
the bulk viscosity and represents a valuable example, showing how to use
moments of the updated distribution function for the local computation of
derivatives (see the Appendix C for details). The above argument is a further
confirmation that the present LW-ACM can easily incorporate technologies
originally developed for LBM.
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Fig. 1. Contours of vorticity at t = 1 from the link-wise ACM with the first im-
provement (νp = 170 ν, see Section 2.1) on a 128 × 128 grid with Ma = 0.04 and
Re = 10000. See also Fig. 8 in [22].

As a concluding remark, it is worth to point out that, even though LW-ACM
can solve this under-resolved test case by means of previously discussed im-
provements, the average and peak values of the velocity field divergence remain
slightly larger than those computed by MRT-LBM. For sake of completeness,
optimized ACM [14] yields much smaller values of velocity field divergence
than those of MRT-LBM. However, it is important to keep in mind that the
Minion & Brown flow is a very severe test due to the small initial perturbation
δ, which realizes a very sharp boundary layer. Hence this test is a multi-scale
problem and some of the regularity assumptions used in deriving the numerical
schemes may not hold completely.

2.6 Link-wise wall boundary conditions

The link-wise formulation of the proposed method offers significant advantages
when dealing with wall boundary conditions. First, let us consider simple
structured boundaries, where walls are aligned along the mesh (for general
cases, the reader can refer to the next section). In particular, let us suppose
that walls are located halfway between two consecutive nodes in an ideal step-
wise geometry. Instead of using Eqs. (14), it proves convenient focusing on the
quantities f ∗

i (after pre-combining) streaming out of a single point x (“push”
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Fig. 2. Contours of vorticity at t = 1 from the link-wise ACM with the both sug-
gested improvements (νp = 170 ν, see Section 2.1, and γ = 0.4, see Section C) on a
128× 128 grid with Ma = 0.04 and Re = 10000.

formulation)

f ∗
i (x̂, t̂) = f

(e)
i (x̂, t̂)− 2

(

ω − 1

ω

)

f
(e,o)
i (x̂, t̂). (26)

Let us suppose that x̂ is a fluid node close to a complex wall boundary at rest
such that x̂+v̂i is a wall node. In an ideal step-wise geometry, the wall location
is assumed halfway between x̂ and x̂ + v̂i. Hence, during the streaming step,
the information stored in the discrete distribution function pointing towards
the wall are reflected along the same link by the wall (according to the popular
bounce-back rule), namely

f ∗∗
BB(i)(x̂, t̂+ 1) = f ∗

i (x̂, t̂), (27)

where BB(i) is the bounce-back operator giving the lattice link opposite to i-
th. Finally the post-combining step can be performed in the usual way, namely

fBB(i)(x̂, t̂+ 1) = f ∗∗
BB(i)(x̂, t̂+ 1) + 2

(

ω − 1

ω

)

f
(e,o)
BB(i)(x̂, t̂). (28)

Considering that v̂i = −v̂BB(i) and f
(e,o)
i = −f (e,o)

BB(i), the combination of pre-
vious steps yields

fBB(i)(x̂, t̂+ 1) = f
(e)
i (x̂, t̂) +

(

2− 2

ω

)

2f
(e,o)
BB(i)(x̂, t̂). (29)
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In case of moving complex boundary with velocity uw, the procedure reported
in [26] (here reformulated in terms of f

(e,o)
BB(i)) suggests the inclusion of the

additional term

δfBB(i)(ρ0,uw) = 2f
(e,o)
BB(i)(ρ0,uw), (30)

where f
(e,o)
BB(i) is given by Eq. (2) and ρ0 is the averaged density over the whole

computational domain (see Appendix B for details). For sake of simplicity, let
us consider the diffusive scaling: ∆x = ε � 1, ∆t = ε2. Hence, the incom-
pressible limit implies ρ(x̂) = ρ0 + O(ε2). Moreover, the point x̂ is only ε/2
away from the moving wall. Combining the previous conditions, the following
approximation holds u(x̂) = uw +O(ε2) and

f
(e,o)
BB(i)(x̂, t) = f

(e,o)
BB(i)(ρ0,uw) +O(ε2),

meaning that the rightmost term of Eq. (29) produces a similar effect to the
correction (30). Hence, the suggested correction for LBM will be multiplied
by a scaling factor (complement to one of the factor multiplying the last term
in Eq. (29)) in link-wise ACM, namely

fw
BB(i)(x̂, t̂+ 1) = fBB(i)(x̂, t̂+ 1) +

(

2

ω
− 1

)

δfBB(i)(ρ0,uw), (31)

where fw
BB(i) is the proper boundary condition in case of moving boundary.

Link-wise formulation is also very useful in computing hydrodynamical forces
acting on bodies. A popular approach in LBM literature is based on the so-
called momentum exchange algorithm (MEA), originally proposed in [27] and
lately improved in [28] (see [29] for a complete discussion). In LBM, at every
time step, the momentum

pi = v̂if
post
i (x̂, t̂)− v̂BB(i)fBB(i)(x̂, t̂+ 1) = v̂i

[

fpost
i (x̂, t̂) + fBB(i)(x̂, t̂+ 1)

]

,

(32)
is transferred from the fluid to the solid body (fpost

i is the post-collisional
distribution function). For sake of simplicity, here we restrict ourselves on
bodies at rest. In link-wise ACM, the quantity fpost

i is purposely defined in
order to get rid of the last term in the post-combining step, namely

fpost
i (x̂, t̂) = f ∗

i (x̂, t̂)− 2
(

ω − 1

ω

)

f
(e,o)
BB(i)(x̂, t̂). (33)

Introducing the previous definition in Eq. (32) yields

pi = v̂i

[

f ∗
i (x̂, t̂) + f ∗∗

BB(i)(x̂, t̂+ 1)
]

. (34)

The previous expression for link-wise ACM is general. In case of step-wise
geometries (as those considered in this section), the expression (27) holds and
Eq. (34) can be recast as: pi = 2v̂if

∗
i (x̂, t̂). The force exerted on a body is
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computed by a summation of the contributions (34) over all the boundary
links surrounding its surface:

F =
∑

i∈S

pi, (35)

where S is the set of links starting from all surrounding nodes intersecting the
body.

Conversion of the force (35) from lattice units to physical units requires sub-
straction of the hydrostatic component F0 generated by the averaged density
field ρ0 (see also the Appendix B for details). Computing the hydrostatic force
on partial boundaries of a body by Eq. (35 and 34) can be accomplished after
exclusion of the velocity-dependent components of f ∗

i and f ∗∗
BB(i). If the force

is computed on the entire body surface, the hydrostatic force is null. The re-
maining quantity F −F0 scales as the second order tensor: in case of diffusive
scaling F −F0 ∼ ε2. However the number of points in the set S increases pro-
portionally to 1/ε. Consequently the following scaling holds (see also Table
1)

∆F̄ = (F − F0)/ε
2 =



−F0/ε+
∑

i∈S(1/ε)

pi



 /ε. (36)

2.6.1 2D lid driven cavity flow

In this section, the effective enhanced stability of the present LW-ACMmethod
is tested by means of the classical two-dimensional (2D) lid driven cavity
problem (see also [30, 31, 32]). Such a benchmark has been considered owing
to a singularity of the pressure in the lid corners, which makes it a severe test
for robustness of numerical schemes, especially starting from moderately high
Reynolds numbers. In all simulations, we consider a square domain (x, y) ∈
[0, L]× [0, L], with L = 1. Such a domain is discretized by uniform collocated
grid with N × N points. The boundaries are located half-cell away from the
computational nodes. Let us denote x̂b the generic boundary computational
node. In all inner nodes (x̂ 6= x̂b), Eq. (13) holds for any lattice velocity v̂i.
In an arbitrary boundary node x̂b, Eq. (13) holds for any lattice velocity v̂i

such that x̂b + v̂i is still a computational node. In case x̂b + v̂i falls out of
the computational grid, the boundary condition (31) is applied, with uw being
the boundary velocity (imposed half-cell away from the boundary node x̂b).
In the following numerical simulations, uw = (uL, 0)

T at the lid wall, where
uL is the lid velocity, and uw = 0 for all the other walls. At the lid corners,
the lid velocity is imposed, while for other corners the boundary conditions
(31) are adopted.

In Figs. 3 and 4, numerical results corresponding to several grids and methods
are reported for Reynolds number Re = uLL/ν = 5000. In this case, it is
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Fig. 3. Streamlines for the lid driven cavity flow with Re = 5000. Different numerical
methods and different meshes are compared. The location of the four minima of the
stream-function is denoted by filled circles.

known that the flow is characterized by four main vortexes, whose actual
centers can be found by searching for local extrema of the stream function ψ
defined as:

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (37)

with u and v being the horizontal and vertical component of the velocity field,
respectively.

For standard Lattice Boltzmann method [16] with BGK collisional operator
and D2Q9 lattice, the coarsest grid which ensures numerical stability was
found to be 250 × 250. On the other hand, the present LW-ACM method
can be safely adopted with 125 × 125 grid, and reasonably accurate results
are found as reported in Figs. 3 and 4. In addition, LW-ACM shows stability
even with 50× 50 grid (1/25 the total number of nodes needed by BGK-LBM
method), where LW-ACM is still able to describe the main features of the 2D
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Fig. 4. Pressure contours for the lid driven cavity flow with Re = 5000. Different
numerical methods and different meshes are compared.

cavity flow at Re = 5000.

In Fig. 4 the pressure contours for the same test are reported. As visible in the
upper-left part of Fig. 4 the BGK solution shows some checkerboard pressure
distribution at the top corners of the cavity. The mesh resolution is still enough
to overcome the checkerboard instability mechanism: however this comes at
the price of a very large computational domain (larger than 250 × 250). On
the other hand, no such a problem was noticed with LW-ACM, even for quite
coarse grids (down to 50 × 50). The absence of spurious oscillations in the
numerical solutions by the artificial compressibility method (ACM) for this
test case has been already pointed out [12]. Hence, the previous numerical
evidences demonstrate that also the present link-wise formulation of ACM
inherits the same feature.

It is worth stressing that numerical stability on coarse grids, yet with poor
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Fig. 5. Comparison of the velocity field for the lid driven cavity flow at Re = 5000
with 128×128 grids: horizontal component u and vertical component v are reported
on the left and right hand side, respectively. Thin and bold lines denote the present
LW-ACM (with νp = ν) and optimized ACM solution [12], respectively. The lat-
ter method is based on a second order accurate scheme in time, and fourth order
accurate scheme in space (bulk fluid).
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Fig. 6. Comparison of the pressure field for the lid driven cavity flow at Re = 5000
with 128×128 grids. Thin and bold lines denote the present LW-ACM (with νp = ν)
and optimized ACM solution [12], respectively. The latter method is based on a
second order accurate scheme in time, and fourth order accurate scheme in space
(bulk fluid).

accuracy, is a highly desirable feature in several engineering problems, e.g.
where a loose grid resolution of details of no interest (for the overall flow
phenomena) should not prevent global convergence of the code.

Clearly the numerical schemes should be compared in terms of the actual
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Fig. 7. Comparison of the velocity field for the lid driven cavity flow at Re = 5000
with 256×256 grids: horizontal component u and vertical component v are reported
on the left and right hand side, respectively. Thin and bold lines denote the present
LW-ACM (with νp = ν) and ACM solution [12], respectively. The latter method is
based on a second order accurate scheme in time, and fourth order accurate scheme
in space.

y 
[−

]

x [−]

0.04 0.04−0.02

−0
.0

4

0

0 0.5 1
0

0.5

1

Fig. 8. Comparison of the pressure field for the lid driven cavity flow at Re = 5000
with 256×256 grids. Thin and bold lines denote the present LW-ACM (with νp = ν)
and ACM solution [12], respectively. The latter method is based on a second order
accurate scheme in time, and fourth order accurate scheme in space.

accuracy as well. From the very beginning, it is worth to point out that all
considered methods (i.e. BGK-LBM, MRT-LBM, ACM, LW-ACM) are based
on artificial compressibility and even steady state solutions depend on the
numerical Mach number (in particular, the pressure gradients depend on the
Mach number, as well as the number of time steps). In particular, reducing
the numerical Mach number improves the quality of the results. See Appendix
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B for details. Hence a fair comparison among different methods requires using
the same numerical Mach number.

The flow fields of a 2D lid-driven cavity problem with Re = 5000 and 128×128
grid, as predicted by the optimized ACM method [12] and the present LW-
ACM (with Mach number Ma = 0.2 and νp = ν), have been compared. Here
optimized ACM means that (a) high wave numbers are damped for the sup-
pression of the checkerboard instability and (b) the Richardson extrapolation
in the Mach number (except around top singular corners) is employed [12]. As
reported in Figs. 5 and 6, LW-ACM shows both a smoother and more accurate
behavior (see also Table 5), beside a remarkably simpler implementation.

Moreover, in Figs. 7 and 8, we report the flow fields of a 2D lid-driven cavity
problem with Re = 5000 and 256×256 grid as predicted by the optimized ACM
[12] and the present LW-ACM (with Mach number Ma = 0.2 and νp = ν),
where a small mismatch between the two solutions is observed. This time the
optimized ACM method is able to reproduce the reference results [30] with
excellent accuracy (despite the use of a much coarser grid: 2562 vs. 20482),
although minor pressure oscillations are still visible at the lid corners and this
affects, e.g., the prediction of entrophy (see Eq. (38) and Table 5). Differences
between ACM and LW-ACM are mainly due to: 1)different accuracy of the two
schemes (second and first order accuracy in time for ACM and the present LW-
ACM respectively, whereas fourth and second order accuracy in space for ACM
and the present LW-ACM respectively), and 2) slightly different treatment of
boundaries. ACM imposes boundary conditions on the computational nodes,
while in LW-ACM, analogously to LBM, the wall boundary conditions are
imposed half cell away from the computational node. This allows one to avoid
singularities, which appear in the top corners for this test case. Despite all
this, it is fair to say that the agreement between the above two solutions is
quite good.

In Figs. 9 and 10, the flow field computed by the LW-ACM with Re = 5000
and 256×256 grid is compared to a reference solution from the literature [30],
where a state of the art code based on finite differences is used with a remark-
ably fine grid (2048 × 2048). Despite a significant disparity in the number of
computational nodes (LW-ACM makes use of 1/64 the nodes adopted for the
reference solution), an excellent agreement is found. It is worth stressing that,
the above problem was also simulated by the multiple relaxation time lattice
Boltzmann method (MRT-LBM) with 256 × 256 grid. Comparison between
MRT-LBM and the reference solution is also very good, however the issue of
spurious pressure oscillations in the upper-left corner of the cavity could not be
avoided. Further comparisons between the LW-ACM and other methods are
proposed in Table 5. Here, coordinates of the primary vortex center (xp, yp),
coordinates of the lower-right vortex center (xlr, ylr), total kinetic energy E
and enstrophy Z are reported for several schemes and grids, where the latter
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Fig. 9. Comparison of the velocity field for the lid driven cavity flow at Re = 5000:
horizontal component u and vertical component v are reported on the left and right
hand side, respectively. Thin and bold lines denote the present LW-ACM (256×256
grid, with νp = ν) and the reference solution [30] (2048× 2048 grid), respectively.
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Fig. 10. Comparison of the pressure field for the lid driven cavity flow at Re = 5000.
Thin and bold lines denote the present LW-ACM (256×256 grid) and the reference
solution [30] (2048× 2048 grid), respectively.

two quantities are computed as follows:

E =
1

2

∫

Ω
‖u‖2 dΩ ≈ 1

2
∆x∆y

∑

i,j

(

u2i,j + v2i,j
)

,

Z =
1

2

∫

Ω
‖ω‖2 dΩ ≈ 1

2
∆x∆y

∑

i,j

ω2
i,j ,

(38)

with ω = ∂xv − ∂yu, ∆x and ∆y being the vorticity and the grid spacings re-
spectively. In our study, we notice that one consequence of spurious pressure
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oscillations in the solution of classical lattice Boltzmann schemes is that both
BGK-LBM and MRT-LBM show remarkable inaccuracy in recovering the en-
strophy value predicted by the reference [30], whereas the present LW-ACM
overcomes the above issue.

Finally, based on Figs. 3, 4, 5, 6, 7, 8, 9, 10, on comparisons of local and global
quantities proposed in Table 5, we can conclude that LW-ACM represents an
excellent alternative in terms of simplicity, stability and accuracy.

Table 5
2D lid driven cavity flow at Re = 5000: Comparison between the present LW-ACM
(with Mach number Ma = 0.2, ν = νp) and alternative solvers for INSE from lit-
erature [12, 30, 13]. In artificial compressibility methods (LW-ACM, BGK-LBM,
MRT-LBM), even steady state solutions depend on the numerical Mach number:
Hence a fair comparison among different methods requires using the same numer-
ical Mach number (Ma = 0.2 in this case). †This is the optimized version of the
ACM method proposed in [12] where (a) high wave numbers are damped for the
suppression of the checkerboard instability and (b) the Richardson extrapolation
in the Mach number (except around top singular corners) is employed. ∗Owing to
both the accuracy of the scheme and the size of meshes adopted, these results are
considered as a reference for the present study. However, since enstrophy Z for 2D
lid-driven cavity goes to infinity as the grid spacing goes to zero [30], a meaningful
comparison for Z is among similar grids.

Scheme Grid (xp, yp) (xlr, ylr) Energy Enstrophy

Present 128× 128 (0.51652, 0.53754) (0.81081, 0.079079) 0.039845 29.247

[12] 128× 128 (0.52052, 0.53954) (0.82883, 0.071071) 0.027430 41.249

[12]† 128× 128 (0.51652, 0.53854) (0.80981, 0.072072) 0.038371 37.704

BGK-LBM 128× 128 unstable unstable unstable unstable

MRT-LBM 128× 128 (0.51652, 0.53554) (0.80881, 0.075075) 0.043600 37.404

[30]∗ 128× 128 (0.51562, 0.53906) (0.80469, 0.070313) 0.043566 30.861

Present 256× 256 (0.51552, 0.53554) (0.80581, 0.074074) 0.044391 34.821

[12] 256× 256 (0.51652, 0.53654) (0.80881, 0.072072) 0.040896 43.198

[12]† 256× 256 (0.51451, 0.53654) (0.80380, 0.072072) 0.048114 42.290

BGK-LBM 250× 250 (0.51752, 0.54054) (0.80781, 0.074074) 0.041614 40.455

MRT-LBM 256× 256 (0.51552, 0.53554) (0.80681, 0.074074) 0.045222 40.833

[30]∗ 256× 256 (0.51562, 0.53516) (0.80859, 0.074219) 0.046204 34.368

[30]∗ 2048× 2048 (0.51465, 0.53516) (0.80566, 0.073242) 0.047290 40.261

Remark-In this study, towards the end of making an extensive comparison
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among state of the art INSE solvers, simulations are performed by different
methods and grids as reported in Table 5. Since boundaries may be located
differently for different methods (e.g. unlike ACM [12] where boundaries co-
incide with computational nodes, in LW-ACM boundaries are half cell away
from computational nodes), upon convergence, all the fields are first interpo-
lated (by cubic spline interpolation) on a shifted grid (same size as the one
used for fluid dynamic computations) having the boundaries located on the
computational nodes. The values of global kinetic energy and enstrophy given
by Eq. (38) are based on the latter shifted grids.

Moreover, if one performs the calculation of streamlines and vortex locations
on the basis of the same nodes of the fluid dynamic grid, the final accuracy
will depends on both the accuracy of the numerical solution and the grid it-
self. Hence, results on coarse grids are penalized twice. Therefore, towards
the end of computing the coordinates (xp, yp) and (xlr, ylr), all the hydrody-
namic fields (as computed by the several schemes and different meshes) are
first interpolated (by cubic spline interpolation) on a larger mesh, and there-
after the stream function and the vortex locations are computed. The latter
post-processing procedure is composed of the following subsequent steps: 1)
interpolation of the results on fixed fine grid (10002 in Table 5); 2) computation
of the stream function and its local extrema denoting the vortex centers.

2.6.2 3D diagonally driven cavity flow

One of the main advantage of the proposed link-wise formulation of ACM
consists in its independence on the space dimensionality (as far as the con-
sidered equilibrium satisfies the constraints required by the target equations:
see Appendix B for details). As a result, the extension of LW-ACM to three-
dimensional flows is straightforward. In the following calculations, the D3Q19
lattice [16] will be used: even though that is not a Hermitian lattice (such as
D3Q27), the former lattice allows to satisfy the constraints required by the
Navier-Stokes equations (in particular Eq. (B.10)).

Here, we have chosen the three-dimensional (3D) diagonally lid-driven cavity
flow, which is a classical benchmark for numerical solvers of the incompressible
Navier-Stokes equations (see also [33, 34, 35]). The cavity is a cubic box with
unit edge as schematically sketched in Fig. 11. The boundary condition at the
top plane (x, y, 1) is uL = (

√
2,
√
2, 0)/2 so that uL = ‖uL‖ = 1, whereas the

remaining five walls are subject to no-slip boundary conditions. The computa-
tional domain is discretized by a uniform collocated grid with N3 nodes, with
boundaries located half-cell away from the computational nodes. Towards the
end of making a comparison with data from literature, calculations have been
performed by the LW-ACM at two Reynolds numbers studied in [33, 35] and
[34] (Re = 700, Re = 2000), and two grids: N = 48 and N = 60. Let us de-
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Fig. 11. Cavity flow with the lid moving along its diagonal. Velocity components
along axes x, y and z are denoted u, v and w respectively.

note x̂w the generic boundary computational node. In all inner computational
nodes (x̂ 6= x̂w), Eq. (13) holds for any lattice velocity v̂i.

In this test case, numerical stability is significantly affected by boundary con-
ditions. For that reason, in Ref. [34], Authors suggest to use equilibrium-based
boundary conditions for the sliding wall at relatively high Reynolds numbers
on small computational grids. Nevertheless, as pointed out [34], this imple-
mentation imposes an incorrect constant pressure at the boundary, with the
momentum transfer significantly weakened in the direction perpendicular to
the lid. Moreover, in Ref. [34], the “node” bounce-back boundary conditions
are applied to the remaining five walls for imposing no-slip boundary condi-
tions. Although such an approach reduces oscillations caused by the parity in-
variance and thus enhances the numerical stability, the several simplifications
discussed above were necessary to simulate the 3D cavity flow with Re = 2000,
D3Q15 lattice and 523 grid.

On the contrary, the present LW-ACM method does not need to resort to
the above simplifications any longer. At an arbitrary boundary node x̂w Eq.
(31) holds, with uw being the boundary velocity (imposed half-cell away from
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the boundary computational node x̂w). This increases the accuracy in treat-
ing the boundaries (compared to [34]) and, most importantly, it makes prob-
lems in three-dimensions just a straightforward extension of the ones in two-
dimensions (see previous section).

In Figs. 12, 13 and 14 we report a comparison between the velocity fields (in
the MP, CP and PP planes of Fig. 11) by both the commercial code FLUENT
(non-uniform 683 grid) [33, 35], here considered as a reference, and the present
LW-ACM (603 uniform grid) at Reynolds Re = 700: All the flow structures
are correctly reproduced by LW-ACM. Due to a lack of local quantities in Ref.
[33] for Re = 2000, we solved the latter case by the commercial code FLUENT
on our own and we included these results as well in the following comparison.
It is important to point out (as reported in Ref. [33]) that commercial code
FLUENT did not converge with uniform mesh, i.e. without wall mesh refine-
ment. On the other hand, no such problem was found by LW-ACM. Based
on a comparison of local quantities in Fig. 15 for Re = 700, in Fig. 16 for
Re = 2000 and parallel/perpendicular global momenta M‖, M⊥:

M‖ =
1

2

∫

V
(u+ w)2dV ≈ 1

2
∆x∆y∆z

∑

i,j,k

(ui,j,k + wi,j,k)
2 ,

M⊥ =
1

2

∫

V
(u− w)2dV ≈ 1

2
∆x∆y∆z

∑

i,j,k

(ui,j,k − wi,j,k)
2

(39)

reported in Table 6, we can conclude that the present LW-ACM is indeed able
to recover the reference solution with significant accuracy.

In Fig. 17, results of the 3D lid-driven cavity flow at higher Reynolds number,
Re = 2000, are reported. It is worth stressing that, here all the main structures
of the flow are correctly described by LW-ACM even with grids coarser than
the one adopted in the reference solution [33, 35]. We stress that, describing
secondary vortexes in this case is known to be a severe test for numerical
schemes (in particular catching top-left and bottom-right secondary vortexes).

For the sake of completeness, we also notice as the Reynolds number increases
larger deviations of the LW-ACM solution from the reference are observed in
terms of the parallel/perpendicular global momenta M‖, M⊥ (see Table 6).

Finally, in Fig. 18 the numerical results obtained by both LW-ACM and the
MRT-LBM [34] are shown. These two simulations are not perfectly compara-
ble each other. In fact, Authors in Ref. [34] were forced by stability issues to
implement some simplifications when dealing with the boundary conditions
(mainly, equilibrium-based boundary conditions for imposing the lid velocity
and “node” bounce-back for the no-slip boundary conditions). Those simpli-
fications reduce the accuracy with regards to that recovered by Eq. (31).

Other minor difference is that [34] and the present study were obtained by the

36



D3Q15 lattice with 523 grid, and D3Q19 lattice with 483 grid respectively. We
notice that, in this case, MRT-LBM makes use of a larger number of degrees of
freedom compared to LW-ACM: 523×15 > 483×19. In spite of this, it is quite
clear by Fig. 18 that the pressure field recovered by the present LW-ACM is
remarkably smoother than the one obtained by MRT-LBM. More specifically,
a crucial difference is that LW-ACM predicts smooth pressure increase at
the top-right corner, while the MRT-LBM results are affected by oscillations
around the imposed constant pressure at the top plane.

Fig. 12. Flow in the middle plane z = 0.5 of the 3D diagonally driven cavity (MP
plane in Fig. 11) at Re = 700. Comparison between the LW-ACM with 603 grid
(left) and a reference solution [33] obtained by the commercial code FLUENT (right)
with 683 total number of grid nodes.

Table 6
3D diagonally driven cavity: Volume integral of momentum flux. Comparisons are
carried out between the present LW-ACM method and the reference solution in [33]
adopting 603 and 683 total number of grid nodes, respectively.

Present, Re = 700 [33, 35], Re = 700 Present, Re = 2000 [33, 35], Re = 2000
∫

V M‖ 0.203× 10−1 0.216× 10−1 0.134× 10−1 0.163× 10−1

∫

V M⊥ 0.232× 10−2 0.283× 10−2 0.174× 10−2 0.239× 10−2

2.6.3 Circular Couette flow

Dealing with moving complex boundaries is very important in many applica-
tions: for example, particle suspensions, granular flows and active (bio-)agents
immersed in the flow. In these cases, the essential issue is to reduce as much
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Fig. 13. Flow in the plane perpendicular to the direction of the lid (CP plane in Fig.
11) at Re = 700. Comparison between the LW-ACM with 603 Cartesian grid (top)
and a reference solution [33] obtained by the commercial code FLUENT (bottom)
with 683 total number of grid nodes. At the centerline, a stagnation point is observed
at z = 0.68 (present), and z = 0.74 (FLUENT).

as possible the computational demand by avoiding re-meshing every time that
the considered objects move in the flow. Taking into account moving objects
is also complicated by the need of re-initializing the portions of the flow field
which are filled again by the fluid after the motion of the objects. The lat-
ter feature is neglected here, because it is a general issue, not peculiar of the
link-wise methods.

First of all, we extend the wall boundary treatment discussed in the previous
sections. Let us suppose that x̂ is a fluid node close to a complex wall boundary
at rest such that x̂+ v̂i is a wall node. Let us focus on the intersection between
the i-th lattice link and the wall. The distance between the latter intersection
and the fluid node, divided by the mesh spacing ∆x, gives the normalized
distance 0 ≤ q ≤ 1 (above we considered only the case: q = 1/2). In this case,
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Fig. 14. Flow in the plane parallel to the direction of the lid (PP plane in Fig. 11)
at Re = 700. Comparison between the LW-ACM with 603 Cartesian grid (top) and
a reference solution [33] obtained by the commercial code FLUENT (bottom) with
683 total number of grid nodes.

the streaming step can be performed following the same procedure provided
for LBM in [26] (instead of using Eq. (28)), namely

f ∗∗
BB(i)(x̂, t̂+ 1) =











2qf ∗
i (x̂, t̂) + (1− 2q)f ∗

i (x̂− ε v̂i, t̂), q < 1/2,

1
2q
f ∗
i (x̂, t̂) +

(

1− 1
2q

)

f ∗
BB(i)(x̂, t̂), q ≥ 1/2,

where BB(i) is the bounce-back operator giving the lattice link opposite to i-
th. Finally the post-combining step can be performed in the usual way, namely
by means of Eq. (28).

In case of moving complex boundary with velocity uw, the procedure reported
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Fig. 15. Velocity profile along the line ML (left) and the line RL (right) at Re = 700
(see also Fig. 11). Comparison between the present LW-ACM with uniform 603

Cartesian grid and a reference solution (consistent with [33]) obtained by the com-
mercial code FLUENT with non-uniform 683 total number of grid nodes.
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Fig. 16. Velocity profile along the line ML (left) and the line RL (right) at Re = 2000
(see also Fig. 11). Comparison between the present LW-ACM with uniform 603

Cartesian grid and a reference solution obtained by the commercial code FLUENT
with non-uniform 683 total number of grid nodes.

in [26] suggests to consider an additional term, namely

δfBB(i)(ρ0,uw) =











2f
(e,o)
BB(i)(ρ0,uw), q < 1/2,

1
q
f
(e,o)
BB(i)(ρ0,uw), q ≥ 1/2,

(40)
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Fig. 17. Flow in the middle plane z = 0.5 of the 3D diagonally driven cavity (MP
plane in Fig. 11) at Re = 2000. a) LW-ACM with 483 uniform grid. b) LW-ACM
with 603 uniform grid. c) LW-ACM with 683 uniform grid. d) Reference solution by
the commercial code FLUENT with 683 non-uniform grid [35].

where f
(e,o)
BB(i) is given by Eq. (2) and ρ0 is the average value of the density over

the whole computational domain (see Appendix B for details). Similarly to
what we did in the previous sections, in case of diffusive scaling, the suggested
correction for LBM will be multiplied by a scaling factor in link-wise ACM.
Hence fw

BB(i) given by Eq. (31) is the proper boundary condition in case of
moving complex boundary.

In this section, numerical results are reported for the circular Couette flow,
where a viscous fluid is confined in the gap between two concentric rotating
cylinders. In our study, we assume the inner cylinder (with radius ri) at rest
while the outer cylinder (with radius re) rotates at a constant angular velocity
1/re. The latter flow admits the following exact solution:
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Fig. 18. Pressure contours for the diagonally driven cavity flow for Re = 2000 at
the lateral mid-plane (y = 0.5): Solution obtained by present LW-ACM with 483

uniform grid and D3Q19 lattice (left), and MRT-LBM method with 523 uniform
grid and D3Q15 lattice [34] (right).

Table 7
The L1 norm of the error versus ε ≡ ∆x ≡ Ma at t = 20 in the problem of the
circular Couette flow for ν = 0.07.

Link-wise ACM

ε ≡ ∆x Error L1[ūθ] Error L1[p̄] Error L1[
∣

∣T̄
∣

∣]

1/20 1.53627× 10−3 8.81208× 10−4 4.20562× 10−4

1/40 3.50537× 10−4 3.58432× 10−4 1.98687× 10−4

1/80 1.77257× 10−4 1.97650× 10−4 9.13289× 10−5

1/160 3.42570× 10−5 6.16474× 10−5 3.66160× 10−5

MRT-LBM

ε ≡ ∆x Error L1[ūθ] Error L1[p̄] Error L1[
∣

∣T̄
∣

∣]

1/20 4.66795× 10−3 2.52316× 10−3 7.58091× 10−5

1/40 1.52864× 10−3 8.47929× 10−4 1.39351× 10−4

1/80 3.08607× 10−4 2.99584× 10−4 6.98541× 10−5

1/160 7.99695× 10−5 1.09817× 10−4 3.39760× 10−5

ū(t, r, θ)=−C
(

r

ri
− ri
r

)

sin(θ), (41)

v̄(t, r, θ)=C
(

r

ri
− ri
r

)

cos(θ), (42)

p̄(t, r, θ)= p̄i + C2 ln

(

r2i
r2

)

− C2

2

(

r2i
r2

− r2

r2i

)

, (43)

T̄ =4πC ν ri, (44)
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Fig. 19. Set-up of the circular Couette flow, where one quarter of the domain is
reported. For the sake of clarity, a significantly coarse grid is represented.

where

C =
1

re/ri − ri/re
. (45)

Here, ū, v̄, p̄ and T̄ denote horizontal velocity, vertical velocity, pressure and
the torque on the inner cylinder respectively, with θ being the angle between
radial direction and the horizontal axis. A schematic representation of this
setup is reported in Figure 19. Diffusive scaling is considered for this test
case, where the velocity field is scaled on meshes with different sizes, keeping
fixed the relaxation frequency (see Appendix B for details). The latter scaling
ensures second order convergence in the accuracy, as reported in Table 7.

Moreover, the torque exerted by the fluid on the inner cylinder is computed.
To this end, Eq. (34) is applied in combination with the boundary conditions
provided by (40). The computation of T̄ was finally performed by a summation
of the contributions (34) over all the boundary links around its surface, namely

T =
∑

i∈S

(x̂− x̂c)× pi, (46)

where x̂c is the center of the cylinders and S is the set of links starting from
all nodes surrounding the body and intersecting the body itself. Similarly to
what has been done for scaling the force exerted on a body, the above torque
(assumed acting on the whole inner cylinder) must be converted from lattice
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units to physical units (see Table 1 for details). More specifically, the formula
is the following

T̄ =
∑

i∈S(1/ε)

(x̂− x̂c)× pi, (47)

because |x̂− x̂c| ∼ 1/ε and this automatically takes into account the force
scaling reported in Eq. (36).
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Fig. 20. Circular Couette flow: Pressure error (absolute value of the discrepancy
with respect to the analytical solution) of the pressure solution interpolated on
the inner cylinder surface as a function of the intersection angle (in the interval
θ ∈ [0, π/2]), between the versor normal to the inner cylinder (radial direction) and
the horizontal axis of the Cartesian grid.

In Table 7, the numerical results for the circular Couette flow are reported.
As expected, the numerical solution in terms of velocity and pressure shows
almost second order convergence rate. On the other hand, the modified MEA
for link-wise ACM in computing

∣

∣

∣T̄
∣

∣

∣ shows first order convergence rate (sim-

ilarly to the original MEA for LBM). The torque is a global quantity and
hence it may hide some error compensation. In order to report a quantitative
and detailed assessment of the local stresses, we consider the local wall shear
stress on the inner cylinder surface, namely

τ̄i = ν
dw̄

dr

∣

∣

∣

∣

∣

i

=
T̄

2π r2i
, (48)
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Fig. 21. Circular Couette flow: Wall shear stress error (absolute value of the dis-
crepancy with regards to the analytical solution) calculated by means of the local
solution gradient on the inner cylinder surface as a function of the intersection angle
(in the interval θ ∈ [0, π/2]), between the versor normal to the inner cylinder (radial
direction) and the horizontal axis of the Cartesian grid.

where w̄ =
√
ū2 + v̄2. In particular, in Figs. 20 and 21 the pressure and the

wall shear stress absolute error are reported respectively, as a function of the
intersection angle (in the interval θ ∈ [0, π/2]) between the versor normal
to the inner cylinder (radial direction) and the horizontal axis of the Carte-
sian grid. In both cases, the errors are computed by the absolute value of the
discrepancy between the computed quantities and the analytical solutions.
Different meshes are considered, namely ε = 1/40, 1/80 and 1/160. The nu-
merical results show that, for both pressure values and wall shear stresses, the
LW-ACM produces numerical results which are systematically more accurate
than those by LBM, even though the two methods are using the same bound-
ary conditions. On finer meshes, the numerical errors are more scattered due
to amplification by the logarithmic scale.

In this section, we reported evidences about the possibility to use boundary
conditions, originally formulated for LBM, also in the context of LW-ACM.
The drawback is that these boundary conditions are less intuitive than those
commonly used in FD and this is particularly strident for LW-ACM, which has
a FD formulation indeed. As a concluding remark, it is important to recall that
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the formulation of the boundary condition is very transparent in the original
ACM, e.g. no slip wall velocity and zero pressure gradient normal to the wall.
Moreover, by taking into account the curvature correctly (e.g. by finite-volume
ACM using body-fitted cell system), the accuracy is dramatically improved.
The reason is that, in link-wise ACM and in LBM, the boundary condition
for curved wall is based on one dimensional interpolation, but this method is
not very accurate for computing stresses (depending on local spatial deriva-
tives). Hence for accurate solving boundary layers, the finite-volume ACM
using body-fitted cell system is preferable. However, in the present paper, we
used link-wise boundary conditions because they are extremely simple to be
generalized in three dimensions and they have potential when dealing with
moving complex objects (e.g. particles).

3 Conclusions

In the present work, a novel method for low Mach number fluid dynamic sim-
ulations is proposed, taking inspiration from the best features of both the
Lattice Boltzmann Method (LBM) and more classical computational fluid
dynamic (CFD) techniques such as the Artificial Compressibility Method
(ACM). The main advantage is the possibility of exploiting well established
technologies originally developed for LBM and classical CFD, with special
emphasis on finite differences (at least in the present paper), at the cost of
minor changes. For instance, like LBM, it is possible to use simple Cartesian
structured meshes, eventually recursively refined in the vicinity of solid walls,
and there is no need of solving Poisson equations for pressure. On the other
hand, any boundary condition designed for finite difference schemes can be
easily included.

As far as solving incompressible Navier-Stokes equations - INSE - (by mini-
mal amount of unknowns) is the only concern, the pseudo-kinetic heritages of
LBM represent a severe limitation to several aspects such as designing flexible
boundary conditions, introducing tunable forcing terms and analyzing consis-
tency of the numerical scheme (asymptotics). On the contrary, the suggested
method has no such pseudo-kinetic heritages. Or in other words, following the
standard LBM nomenclature, the present LW-ACM requires no high-order
moments beyond hydrodynamics (often referred to as ghost moments) and no
kinetic expansion such as Chapman-Enskog, Hilbert, van Kampen. Like finite
difference schemes, only standard Taylor expansion is needed for analyzing
consistency. Beside the above aspects, numerical evidences reported in this
work suggest that LW-ACM represents an excellent alternative in terms of
simplicity, stability and accuracy. Hence, in this framework (solving INSE by
minimal amount of unknowns), the utility of high-order moments is question-
able.
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Finally, preliminary efforts towards optimal implementations have shown that
LW-ACM is capable of similar computational speed as optimized (BGK-)
LBM. In addition, the memory demand is significantly smaller than (BGK-)
LBM. In our opinion, there is still room for improvement according to the per-
formance model (based on assuming either infinitely fast memory or infinitely
fast compute units). Importantly, with an efficient implementation, this algo-
rithm may be one of the few which is compute-bound and not memory-bound.
The latter observation is of particular interest for General-Purpose computing
on Graphics Processing Units (GPGPU).
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A Appendix: Equilibrium distribution functions

The quantities f
(e)
i are designed in order to recover the incompressible isother-

mal fluid dynamics. For sake of completeness, we report here the explicit ex-
pressions of the equilibrium functions for some popular lattices.

The D2Q9 lattice [16], suitable for two dimensional problems (D = 2), consists
of the following discrete velocities (Q = 9): v̂0 = (0, 0), v̂i = (±1, 0) and
(0, ±1), for i = 1–4, and v̂i = (±1, ±1), for i = 5–8, where the i-th equilibrium

distribution function f
(e)
i reads

f
(e)
i = wiρ

[

1 + 3v̂i · u+
9

2
(v̂i · u)2 −

3

2
u2
]

, (A.1)
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with ρ the fluid density, and wi the weights

wi =



























4/9 i = 0,

1/9 i = 1–4,

1/36 i = 5–8.

(A.2)

More explicitly, the complete set of equilibria takes the form:

f (e) =

























































4/9 ρ− 2/3 ρu2 − 2/3 ρv2,

1/9 ρ+1/3 ρu+ 1/3 ρu2 − 1/6 ρv2,

1/9 ρ+1/3 ρv + 1/3 ρv2 − 1/6 ρu2,

1/9 ρ−1/3 ρu+ 1/3 ρu2 − 1/6 ρv2,

1/9 ρ−1/3 ρv + 1/3 ρv2 − 1/6 ρu2,

1/36 ρ+1/12 ρ(u+ v) + 1/8 ρ(u+ v)2 − 1/24 ρ(u2 + v2),

1/36 ρ−1/12 ρ(u− v) + 1/8 ρ(−u+ v)2 − 1/24 ρ(u2 + v2),

1/36 ρ−1/12 ρ(u+ v) + 1/8 ρ(−u− v)2 − 1/24 ρ(u2 + v2),

1/36 ρ+1/12 ρ(u− v) + 1/8 ρ(u− v)2 − 1/24 ρ(u2 + v2)

























































,

where u and v are the velocity components, i.e. (u, v)T = u, with pressure
being p = ρ/3. The above equations (A.1) and (A.3) can be generalized as
follows [36]

f (g) (Πxx,Πyy) =

























































ρ (1− Πxx) (1− Πyy) ,

ρ (Πxx + u) (1− Πyy) /2,

ρ (Πxx − u) (1− Πyy) /2,

ρ (1− Πxx) (Πyy + v) /2,

ρ (1− Πxx) (Πyy − v) /2,

ρ (Πxx + u) (Πyy + v) /4,

ρ (Πxx − u) (Πyy + v) /4,

ρ (Πxx − u) (Πyy − v) /4,

ρ (Πxx + u) (Πyy − v) /4,

























































(A.3)

with the equation (A.1) being a special case of (A.3): If one assumes Πxx =
1/3 + u2 and Πyy = 1/3 + v2, then f (g) (1/3 + u2, 1/3 + v2) = f (e) (if third
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order terms with respect to velocity components are neglected). However, it
is possible to introduce more involved functions depending on additional pa-
rameters. For instance, a quasi-equilibrium function which is useful for tuning
bulk viscosity of both lattice Boltzmann and link-wise ACM schemes can be
expressed as

f (qe) (ρ,u,Tr) = f (g)

(

Tr + u2 − v2

2
,
Tr− u2 + v2

2

)

, (A.4)

where Tr is an additional tunable parameter (usually corresponding to the
trace of the second order tensor Π =

∑

i v̂iv̂ifi normalized by density (see
also the Appendix C).

The D3Q19 lattice, which is suitable for three dimensional problems (D = 3),
consists of the following discrete velocities (Q = 19): v̂0 = (0, 0, 0); v̂i =
(±1, 0, 0) and (0, ±1, 0) and (0, 0, ±1), for i = 1–6; v̂i = (±1, ±1, 0) and

(±1, 0, ±1) and (0, ±1, ±1), for i = 7–18. Here, the the i-th function f
(e)
i is

formally identical to (A.1), with the following weights

wi =



























1/3 i = 0,

1/18 i = 1–6,

1/36 i = 7–18.

(A.5)

B Appendix: Asympthotic analysis

In (13), with x̂ = x/∆x and t̂ = t/∆t, both ∆t and ∆x must approach zero,
though it is not clear the value of the limit: lim∆x→0 ∆t/∆x. In order to clarify
this point, we apply Taylor expansion to (13)

fi(t+∆t) = f
(e)
i −∆x v̂i · ∇f (e)

i +
∆x2

2
(v̂i · ∇)2f

(e)
i − ∆x3

6
(v̂i · ∇)3f

(e)
i + . . .

+
(

2− 2

ω

)

(

∆x v̂i · ∇f (e,o)
i − ∆x2

2
(v̂i · ∇)2f

(e,o)
i +

∆x3

6
(v̂i · ∇)3f

(e,o)
i

)

+ . . . ,

(B.1)

where all the quantities are computed in the same point x and hence this is
no more explicitly reported. A summation of Eqs. (B.1) over i yields:
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∂ρ

∂t
+
(

2

ω
− 1

)

∆x

∆t
∇ · (ρu)+ 1

6

(

2

ω
− 1

)

∆x3

∆t
(∇·)3Q(e) =

∆x2

2∆t
(∇·)2Π(e) +O

(

∆x4

∆t
(∇·)2Π(e)

)

,(B.2)

with Q(e) =
∑

i v̂iv̂iv̂if
(e)
i . In the rightmost term of the above expression (B.2),

we rely upon the fact that spatial derivatives of the fourth-order moments
have the same growth rate of spatial derivatives of the second-order moments.
Moreover, the diverge is raised to a power which is selected for consistency with
the units of other terms. This is unessential, as far as the order of magnitude
of the term is concerned. Multiplying (B.1) by v̂i and summing over i, it yields

∂(ρu)

∂t
+

∆x

∆t
∇ ·Π(e) =

∆x2

∆t

(

1

ω
− 1

2

)

(∇·)2Q(e) +O

(

∆x3

∆t
∇ ·Π(e)

)

. (B.3)

Similar considerations as Eq. (B.2) apply to the rightmost term in the above
equation (B.3). Concerning the relationship between ∆t and ∆x, (B.3) sug-
gests two possible strategies:

∆t ∝ ∆x, acoustic scaling, (B.4a)

∆t ∝ ∆x2, diffusive scaling. (B.4b)

Sometimes, the dimensionless mesh spacing ∆x = ∆x′/L is referred to as spac-
ing (∆x ≡ h) in the literature on finite difference method or even numerical
Knudsen number (∆x ≡ Kn) in the Lattice Boltzmann literature. Similarly,
it is possible to introduce a numerical Mach number: Ma = U/(∆x′/∆t′). In
this way, the dimensionless time step ∆t = ∆t′/(L/U) can be expressed as
∆t ≡ KnMa. Hence, the acoustic scaling corresponds to constant Ma, while
the diffusive scaling to Ma ∝ ∆x.

Regardless of the adopted strategy, the numerical scheme must converge to-
wards the physical solution of the incompressible Navier-Stokes equations. The
physical solution is identified by the Reynolds number, which is the recipro-
cal of the factor multiplying the second-order spatial derivatives in Eq. (B.3),
namely

∆x2

∆t

(

1

ω
− 1

2

)

∝ 1

Re
. (B.5)

Hence, according to (B.5), in acoustic scaling ω needs to be tuned in order
to guarantee a constant Reynolds number, while in diffusive scaling a fixed ω
already ensures a constant Reynolds number. Moreover, in acoustic scaling,
the smaller ∆x the smaller ω for keeping fixed the Reynolds number. The
latter case can be problematic in the present LW-ACM due to the heuristic
stability domain, 1 ≤ ω < 2, thus diffusive scaling is generally preferable.

Similarly to standard LBM, in LW-ACM, the definition of ∆t and ∆x is
implicit (and this is sometimes a source of confusion). In fact, the end-user
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can select both Kn ∝ 1/N (with N the number of mesh points along the
flow characteristic length) and Ma by a scaling factor for the velocity field.
Hence, the acoustic scaling requires the tuning of the relaxation frequency
ω on different meshes, keeping constant the computed velocity field. On the
other hand, the diffusive scaling corresponds to a scaling of the velocity field
(see also the section below) on different meshes, keeping fixed the relaxation
frequency.

B.1 Diffusive scaling

Substituting ∆x = ε� 1 and ∆t = ε2 into (B.3), it yields

∂(ρu)

∂t
+

1

ε
∇ ·Π(e) =

(

1

ω
− 1

2

)

(∇·)2Q(e) +O
(

ε∇ ·Π(e)
)

. (B.6)

Due to the presence of a mesh-dependent parameter in (B.6), upon conver-
gence, all moments need to be scaled via the following post-process:

ū = (u− u0)/ε, Π̄(e) = (Π(e) −Π0)/ε
2, Q̄(e) = (Q(e) −Q0)/ε, (B.7)

where u0, Π0 and Q0 are constants, with the odd quantities u0 and Q0 equal
to zero. On the contrary, the even quantity Π0 = p0I, where p0 is the average
pressure over the whole computational domain (the average even moment Π(e)

over the whole computational domain depends mainly on the amount of mass
and only slightly on the flow field).

As a result, the normalized pressure field is defined as p̄ = (p− p0)/ε
2 and the

normalized density field as ρ̄ = (ρ− ρ0)/ε
2 or equivalently ρ = ρ0+ ε2 ρ̄. Upon

substitution of the latter quantities into (B.2), it follows

∇ · ū = O(ε2). (B.8)

Recalling that Π(e) = ρuu + p I and introducing the scaled quantities, we
obtain

ρ0
∂ū

∂t
+ ρ0ū · ∇ū+∇p̄ =

(

1

ω
− 1

2

)

(∇·)2Q̄(e) +O(ε2). (B.9)

In order to recover the incompressible isothermal fluid dynamics, the quantities
f
(e)
i are designed [16] such that

Q
(e)
ijk =

ρ

3
(uiδjk + ujδik + ukδij) . (B.10)

Consequently

∇ · ∇ · Q̄(e) =
ρ0
3
∇2ū+

2 ρ0
3

∇∇ · ū+O(ε2) =
ρ0
3
∇2ū+O(ε2), (B.11)
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where the last result is due to Eq. (B.8). Introducing the previous assumption
in Eq. (B.9), it yields

∂ū

∂t
+ ū · ∇ū+

1

ρ0
∇p̄ = ν∇2ū+O(ε2). (B.12)

where

ν =
1

3

(

1

ω
− 1

2

)

. (B.13)

Introducing the previous expression into Eq. (B.2), it yields

ε2

ρ0

∂ρ̄

∂t
+ 6ν∇ · ū =

ε2

2
∇ ·

(

ū · ∇ū+
1

ρ0
∇p̄

)

+O(ε4). (B.14)

Taking into account the new definition given by (B.13), Eq. (B.8) should be
expressed more rigorously as ∇ · ū = O(ε2/ν). Combining the latter equation
and Eq. (B.12), it follows

∇ ·
(

ū · ∇ū+
1

ρ0
∇p̄

)

= O(ε2/ν). (B.15)

Introducing the above expression into Eq. (B.14), it yields

ε2

6ρ0ν

∂ρ̄

∂t
+∇ · ū = O(ε4/ν2). (B.16)

The divergence-free condition for the velocity field requires that ε2/ν � 1,
which is consistent with (B.12) as well.

B.2 Acoustic scaling

Assuming ∆x = ε� 1 and ∆t = ε, Eq. (B.3) yields

∂(ρu)

∂t
+∇ ·Π(e) = ε

(

1

ω
− 1

2

)

(∇·)2Q(e) +O(ε2). (B.17)

This time, there is no need to scale all the moments and a proper tuning of ω is
sufficient instead (see below). Leaving the moments unscaled and substituting
the above assumptions in Eq. (B.2), we obtain

∂ρ

∂t
+
(

2

ω
− 1

)

∇ · (ρu) = O(ε). (B.18)

The above equation (B.18) proves that acoustic scaling should not be used
in link-wise ACM, when dealing with transient simulations, while for steady
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state flows we get:

∇ · (ρu) = O(ε/ν), (B.19)

showing that, if the density (pressure) gradients are small (consistently with
the incompressible limit), the above equation provides indeed an accurate
divergence-free velocity field. However, in acoustic (unlike diffusive scaling)
the compressibility error cannot be reduced by mesh refinement. Taking into
account Eq. (B.10) and Eq. (B.19), we get

∇ · ∇ · Q(e) =
1

3
∇2(ρu) +O(ε/ν), (B.20)

hence

∂(ρu)

∂t
+∇ · (ρuu) +∇p = ν̄∇2(ρu) +O(ε), (B.21)

where ν̄ = ε ν. If the density (and pressure) gradients are small, the solution
to the system formed by (B.19) and (B.21) provides a reasonable approxima-
tion of the Navier-Stokes solution in the incompressible limit. However, the
latter system does not asymptotically converge towards the incompressible
Navier-Stokes solution, as the mesh get finer and finer (at least, as far as the
discretization error is smaller than the compressibility error). This is the main
reason why the diffusive scaling is preferred in this work.

B.3 Forcing

Let us consider the forcing step described by Eq. (15), with ∆x = ε � 1,
∆t = εβ+1 (or equivalently Ma = Knβ) where β is a free parameter (β = 0
and β = 1 denote acoustic and diffusive scaling, respectively). The correction
due to (15) leads to an additional term in (B.3):

∂(ρu)

∂t
+

∆x

∆t
∇ ·Π(e) =

∆x2

∆t

(

1

ω
− 1

2

)

(∇·)2Q(e) +O

(

∆x3

∆t
∇ ·Π(e)

)

+
1

∆t
ρg.

(B.22)
From the definition ∆t ≡ KnMa and u = Ma ū (see the previous section), the
proper scaling for the forcing term follows:

ḡ =
1

KnMa2
g =

1

ε2β+1
g. (B.23)

A certain physical acceleration ḡ (fixed for a given problem), can be imposed
in the numerical code through the mesh-dependent acceleration g = ε2β+1 ḡ.
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B.4 Energy equation

Under the assumption of negligible viscous heating and conservation of internal
energy, in the incompressible limit, the temperature field is governed by an
advection-diffusion equation. Let us call T the normalized temperature field
such that T ≤ 1 in all the domain of interest, with the quantities f

(e)
i defined

such that p = ρ T/3.

There were a number of suggestions aiming at enabling thermal fluid-dynamic
simulations with the lattice Boltzmann method [37]. Among the most interest-
ing ones, we remind: (a) Increase of the number of velocities and inclusion of
higher-order nonlinear terms (in flow velocity) in the equilibrium distribution
functions; (b) inclusion of finite difference corrections aiming at the fulfill-
ment of energy conservation on standard lattices [38] and, (c) use of two sets
of distribution functions for particle number density (fi), and energy density
(gi), doubling the number of discrete velocities. Even though the first and the
second approaches are preferable from the theoretical point of view, the last
one is characterized by a much simpler implementation. When dealing with
the incompressible limit, the pressure field is characterized by small variations.
However, cases may be experienced where large temperature and density gra-
dients compensate each other. If both pressure gradients and temperature gra-
dients are small, a weak coupling between fluid dynamic and energy equations
is realized and the simplified approach (c) discussed above can be adopted.
This approach will be further extended below in the framework of the present
LW-ACM. Extensions of the approach (b) in the framework of LW-ACM are
currently under investigation as well.

The LW-ACM approach for (weak) thermal fluid dynamic simulations makes
use of the following system of algebraic equations

gi(x̂, t̂+1) = g
(e)
i (x̂−v̂i, t̂)+2

(

ωt − 1

ωt

)

(

g
(e,e)
i (x̂, t̂)− g

(e,e)
i (x̂− v̂i, t̂)

)

, (B.24)

for i = 0, . . . , Qt − 1 (the number of lattice velocities for solving the thermal
field can be different from that used for solving the velocity field, i.e. Qt 6= Q).

The quantities g
(e)
i are local functions of T =

∑

i gi and Tu =
∑

i v̂igi at the

same point x̂ and time t̂. The quantities g
(e)
i are designed in order to recover the

advection-diffusion equation, according to the constraints discussed below. In
particular, recovering the advection-diffusion equation requires :

∑

i g
(e)
i = T

and
∑

i v̂ig
(e)
i = Tu, i.e. the conservation of hydrodynamic moments, and

∑

i v̂iv̂ig
(e)
i = Π

(e)
t = uu+T/3 I. On the other hand, the even parts of equilibria

g
(e,e)
i are defined as

g
(e,e)
i (T,u) =

1

2

(

g
(e)
i (T,u) + g

(e)
i (T,−u)

)

. (B.25)
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Eq. (B.24) is formulated in terms of x̂ = x/∆x and t̂ = t/∆t. In the following,
let us consider the diffusive scaling, namely ∆x = ε� 1 and ∆t = ε2 (see the
Appendix B for further details on diffusive scaling). Taylor expansion of Eq.
(B.24) yields

gi(t+ ε2)= g
(e)
i − ε v̂i · ∇g(e)i +

ε2

2
(v̂i · ∇)2g

(e)
i

+
(

2− 2

ωt

)

(

ε v̂i · ∇g(e,e)i − ε2

2
(v̂i · ∇)2g

(e,e)
i

)

+ . . . , (B.26)

where all the quantities are computed in the same point x and time t and
hence this is no more explicitly reported. Summation over i of the equations
(B.26) yields

∂T

∂t
+

1

ε
∇ · (Tu) + ε

6
(∇·)3Q(e)

t =
(

1

ωt

− 1

2

)

(∇·)2Π(e)
t +O

(

ε2(∇·)2Π(e)
t

)

,

(B.27)

with Q
(e)
t =

∑

i v̂iv̂iv̂ig
(e)
i . In the rightmost term of the expression (B.27),

we rely upon the fact that spatial derivatives of the fourth-order moments
have the same growth rate of spatial derivatives of the second-order moments.
Moreover, in the same term, the diverge is raised to a power which is selected
for consistency with the units of other terms. This is unessential, as far as the
order of magnitude of the term is concerned.

Similarly to the fluid dynamic equations (see the Appendix B), we apply the
following post-processing for scaling all moments (arbitrary constants have
been already omitted):

ū = u/ε, Π̄
(e)
t = Π

(e)
t , Q̄

(e)
t = Q

(e)
t /ε. (B.28)

One possibility for automatic implementation of the latter scaling is to assume

(Q̄
(e)
t )ijk =

1

3
(ūiδjk + ūjδik + ūkδij) , (B.29)

similarly to Eq. (B.10), because thus all terms in Q
(e)
t become proportional to

the velocity field (and they are automatically scaled by means of the first of
the above scalings).

Moreover, taking into account the second scaling and the definition of Π
(e)
t

reported in the main text, we conclude that Π̄
(e)
t = ε2ūū + T/3 I, where T

does not need to be scaled (or equivalently T̄ = T ). Substituting the previous
scalings into (B.26), and taking into account (B.8), we obtain

∂T̄

∂t
+ ū · ∇T̄ = α∇2T̄ +O(ε2), (B.30)
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where

α =
1

3

(

1

ωt

− 1

2

)

. (B.31)

Table B.1
Convergence analysis for thermal Couette flow in case of diffusive scaling, with
Prandtl number Pr = 0.71.

Link-wise ACM

ε ≡ ∆x Ma ∝ ∆t/∆x ν ∝ Re−1 α ∝ Pe−1 Error L2[ū] Error L2[T ]

1/5 1.11× 10−2 5.55× 10−2 1.11× 10−2 3.10× 10−3 1.61× 10−6

1/10 5.55× 10−2 5.55× 10−2 1.11× 10−2 8.25× 10−4 4.28× 10−7

1/20 2.78× 10−3 5.55× 10−2 1.11× 10−2 2.12× 10−4 1.01× 10−7

Here, a few numerical results are reported for the thermal Couette problem,
which is realized by confining a viscous fluid in a gap between two parallel
plates. Assuming that the one plate (hot wall located at y = 0 and with
temperature T̄N) moves in its own plane, whereas the other (cold wall located
at y = 2L and with temperature T̄S) is at rest, the controlling parameters
are the Prandtl number Pr = ν/α (measuring the momentum diffusivity:
ν, to heat diffusivity: α) and the Eckert number Ec = ū2/cv∆T̄ (measuring
the kinetic energy: ρū2/2, to internal energy: ρcv∆T̄ ). Thermal Couette flow
admits the following analytical solution of the temperature field:

T̄ (y) = T̄S +
y

2L
∆T̄ +

Br∆T̄

2

y

2L

(

1− y

2L

)

, (B.32)

with ∆T̄ =
(

T̄N − T̄S
)

, and the Brinkman number Br = PrEc.

Diffusive scaling was considered in our simulations, where the velocity field is
scaled on meshes with different sizes, keeping fixed the relaxation frequency
(see the Appendix B for details). Some preliminary numerical results are re-
ported in Table B.1 for Pr = ν/α = 0.71.

C Appendix: Computing derivatives locally

LW-ACM allows a straightforward local computation of spatial derivatives. In
this respect, a good example is provided by the following strategy for tuning
bulk viscosity. Since the LW-ACM (like LBM and ACM) is an artificial com-
pressibility scheme, bulk viscosity can be regarded as a free parameter (if the
incompressible limit is the only concern).
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One possible strategy for tuning the bulk viscosity is described below. Instead
of standard f

(e)
i (see Eq. (A.1) in Appendix A) in Eq. (13), we consider a

modified set of functions, namely f
(e∗)
i , defined as

f
(e∗)
i = f

(qe)
i

(

ρ,u,Tr(e) + γ (Tr(+) − Tr(e))
)

, (C.1)

where f (qe) (ρ,u,Tr) is given by Eq. (C.1), γ is a free parameter, Tr(e) is the
trace of the tensor Π(e) normalized by the density and Tr(+) is the trace of
the tensor Π(+) =

∑

i v̂iv̂ifi(t + ∆t) normalized again by the density. Let us
consider the two dimensional case (D = 2): by definition, Tr(e) = 2/3 + u2.
Substituting the latter into Eq. (C.1) and taking into account the definition

of f
(qe)
i given by Eq. (A.4), it is possible to compute the second order tensor

of f
(e∗)
i , namely

Π(e∗) = Π(e) +
γ

2
(Tr(+) − Tr(e)) I. (C.2)

At the leading order, the modified equilibrium differs from the standard one
only due to even moments.

In order to simplify the last term of the Eq. (C.2), by Eqs. (B.1), we compute
the following quantities

Π(+) = Π(e) − 6ν∆x∇ · Q(e) +O
(

∆x2(∇·)2Π(e)
)

, (C.3)

where Π(+) =
∑

i v̂iv̂ifi(t+∆t). Recalling the definition in (B.10), it yields

Π(+) = Π(e) − 2ν∆x
(

∇(ρu) +∇(ρu)T +∇ · (ρu) I
)

+O
(

∆x2(∇·)2Π(e)
)

.

(C.4)
with its trace taking the form:

Tr(+) = Tr(e) − 8ν∆x∇ · (ρu) +O
(

∆x2(∇·)2Π(e)
)

. (C.5)

Considering the diffusive scaling, namely ∆x = ε � 1 and ∆t = ε2 (see
Appendix B for further details about the diffusive scaling), the previous ex-
pression can be recast as:

T̄r
(+)

= T̄r
(e) − 8ρ0ν∇ · ū+O(ε2). (C.6)

Introducing the previous expression into Eq. (C.2) and applying the scaling
to the remaining terms, it reads:

Π̄(e∗) = Π̄(e) − 4ρ0ν γ∇ · ū I+O(ε2). (C.7)

Substituting Π̄(e∗) instead of Π̄(e) into Eq. (B.9) and taking into account Eq.
(B.11), it yields

ρ0
∂ū

∂t
+ ρ0ū · ∇ū+∇p̄ = ν∇2ū+ ξ∇∇ · ū+O(ε2), (C.8)

57



where ξ = 2ρ0ν (1+2 γ) is related to the bulk viscosity. The previous equation
is consistent with Eq. (B.12), because the gradient of the divergence of the
velocity field is as large as the leading error (hence it is not spoiling the
consistency). However, the range γ ≥ 0 is usually beneficial to numerical
stability. This strategy enables to increase the bulk viscosity by using the
updated distribution function for computing locally all required derivatives
(involved in the divergence of the velocity field).

D Appendix: Equivalent finite-difference formulas

Here, we provide some finite-difference formulas fully equivalent to Eq. (13) for
a chosen lattice. Let us consider the popular D2Q9 lattice [16] for two dimen-
sional problems (D = 2), and consisting of nine discrete velocities (Q = 9).

The quantities f
(e)
i can be explicitly defined for this lattice [16]. They allow

to recover the incompressible Euler equations (with p = ρ/3), and they are
consistent with the property given by (B.11), which is essential for recover-
ing Navier-Stokes equations. The numerical algorithm is fully defined, upon
substitution of f

(e)
i into the Eq. (13).

According to the finite-difference literature, we define the generic computa-
tional stencil by means of cardinal directions. The generic point P with a
position vector x̂ = (n,m)T (the superscript T denotes transposition) is iden-
tified by a pair of integers n and m. By means of the subscripts E and W , we
denote the neighboring points (n ± 1,m)T , respectively. Similarly, by means
of the subscripts N and S, we mean the neighboring points (n,m ± 1)T , re-
spectively. Two types of subscripts may be used concurrently for identifying
the diagonal points.

Concerning time levels, if not otherwise stated, all quantities are intended as
computed at the generic time level t̂, with the superscript “+” meaning a
quantity at the new time level t̂ + 1. The unknown quantities are given by
the velocity components u = (u, v)T and the pressure p (the density for this
model is given by ρ = 3 p). Hence the equivalent finite-difference formulas
must provide a way to compute u+P , v

+
P and p+P .

Applying the definitions of hydrodynamic quantities to Eq. (13), it follows:
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p+P u
+
P = pE(−6u2E + 6uE + 3v2E − 2)/18 + pW (6u2W + 6uW − 3v2W + 2)/18

−pNE(3u
2
NE + 9uNEvNE − 3uNE + 3v2NE − 3vNE + 1)/36

+pNW (3u2NW − 9uNWvNW + 3uNW + 3v2NW − 3vNW + 1)/36

−pSE(3u2SE − 9uSEvSE − 3uSE + 3v2SE + 3vSE + 1)/36

+pSW (3u2SW + 9uSWvSW + 3uSW + 3v2SW + 3vSW + 1)/36

+2/3(1/ω − 1) [pEuE − 3pPuP + pWuW
+(pNEuNE + pNWuNW + pSEuSE + pSWuSW )/4

+(pNEvNE − pNWvNW − pSEvSE + pSWvSW )/4] , (D.1)

p+P v
+
P = pN(3u

2
N − 6v2N + 6vN − 2)/18 + pS(−3u2S + 6v2S + 6vS + 2)/18

−pNE(3u
2
NE + 9uNEvNE − 3uNE + 3v2NE − 3vNE + 1)/36

−pNW (3u2NW − 9uNWvNW + 3uNW + 3v2NW − 3vNW + 1)/36

+pSE(3u
2
SE − 9uSEvSE − 3uSE + 3v2SE + 3vSE + 1)/36

+pSW (3u2SW + 9uSWvSW + 3uSW + 3v2SW + 3vSW + 1)/36

2/3(1/ω − 1) [pNvN − 3pPvP + pSvS
+(pNEuNE − pNWuNW − pSEuSE + pSWuSW )/4

+(pNEvNE + pNWvNW + pSEvSE + pSWvSW )/4] . (D.2)

p+P =−2pP (3u
2
P + 3v2P − 2)/9

−pE(−6u2E + 6uE + 3v2E − 2)/18 + pW (6u2W + 6uW − 3v2W + 2)/18

−pN(3u2N − 6v2N + 6vN − 2)/18 + pS(−3u2S + 6v2S + 6vS + 2)/18

+pNE(3u
2
NE + 9uNEvNE − 3uNE + 3v2NE − 3vNE + 1)/36

+pNW (3u2NW − 9uNWvNW + 3uNW + 3v2NW − 3vNW + 1)/36

+pSE(3u
2
SE − 9uSEvSE − 3uSE + 3v2SE + 3vSE + 1)/36

+pSW (3u2SW + 9uSWvSW + 3uSW + 3v2SW + 3vSW + 1)/36

+2/3(1/ω − 1) [−pEuE + pSvS + pWuW − pNvN
+(pSWuSW + pNWuNW − pNEuNE − pSEuSE)/4

+(pSWvSW − pNWvNW − pNEvNE + pSEvSE)/4] , (D.3)

It is important to stress that the above expressions (D.1), (D.2), (D.3) for the
considered lattice model are fully equivalent to (13) up to machine precision,
since no asymptotic analysis is requested in their derivation.

From a computational perspective, optimal implementation requires that the
number of floating point operations are reduced as much as possible by com-
mon subexpression elimination (CSE) [20]. Moreover, for locating the macro-
scopic quantities (p, u, v) contiguously in the memory, it is possible to collect
them in a single array and to use the first index for addressing them, namely
M(1 : 3, 1 : Nx, 1 : Ny) where Nx × Ny is the generic mesh. This leads to an
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optimized FD-style implementation. First of all, let us compute the following
auxiliary quantities

puP =M(1, i, j)M(2, i, j), ϕuP = 2 puP ,

pvP =M(1, i, j)M(3, i, j), ϕvP = 2 pvP ,

pvN =M(1, i, j+ 1)M(3, i, j+ 1), pvS = M(1, i, j− 1)M(3, i, j− 1),

puE =M(1, i+ 1, j)M(2, i+ 1, j), puW = M(1, i− 1, j)M(2, i− 1, j),

puNE =M(1, i+ 1, j+ 1)M(2, i+ 1, j+ 1),

puNW =M(1, i− 1, j+ 1)M(2, i− 1, j+ 1),

puSE =M(1, i+ 1, j− 1)M(2, i+ 1, j− 1),

puSW =M(1, i− 1, j− 1)M(2, i− 1, j− 1),

pvNE =M(1, i+ 1, j+ 1)M(3, i+ 1, j+ 1),

pvNW =M(1, i− 1, j+ 1)M(3, i− 1, j+ 1),

pvSE =M(1, i+ 1, j− 1)M(3, i+ 1, j− 1),

pvSW =M(1, i− 1, j− 1)M(3, i− 1, j− 1), (D.4)

and

φ1 = puE (−M(2, i+ 1, j) + 1) +M(1, i+ 1, j) (M(3, i+ 1, j)2/2− r13),

φ2 = puW (M(2, i− 1, j) + 1)−M(1, i− 1, j) (M(3, i− 1, j)2/2− r13),

φ3 = pvN (−M(3, i, j+ 1) + 1) +M(1, i, j+ 1) (M(2, i, j+ 1)2/2− r13),

φ4 = pvS (M(3, i, j− 1) + 1)−M(1, i, j− 1) (M(2, i, j− 1)2/2− r13),

φ5 = puNE (M(2, i+ 1, j+ 1) + 3M(3, i+ 1, j+ 1)− 1) + . . .

· · ·+ pvNE (M(3, i+ 1, j+ 1)− 1) +M(1, i+ 1, j+ 1) r13,

φ6 = puNW (M(2, i− 1, j+ 1)− 3M(3, i− 1, j+ 1) + 1) + . . .

· · ·+ pvNW (M(3, i− 1, j+ 1)− 1) +M(1, i− 1, j+ 1) r13,

φ7 = puSE (M(2, i+ 1, j− 1)− 3M(3, i+ 1, j− 1)− 1) + . . .

· · ·+ pvSE (M(3, i+ 1, j− 1) + 1) +M(1, i+ 1, j− 1) r13,

φ8 = puSW (M(2, i− 1, j− 1) + 3M(3, i− 1, j− 1) + 1) + . . .

· · ·+ pvSW (M(3, i− 1, j− 1) + 1) +M(1, i− 1, j− 1) r13, (D.5)

where r13 = 1/3. By means of the quantities (D.4) and (D.5), it is possible to
compute the following additional quantities

φPp = puP + pvP , φPm = puP − pvP ,

φNEp = puNE + pvNE, φSWp = puSW + pvSW ,

φNWm= puNW − pvNW , φSEm= puSE − pvSE,

ΦNE = φNEp − φPp, ΦSW = φPp − φSWp,

ΦNW = φNWm − φPm, ΦSE = φPm − φSEm,

ΦNWSE = ΦNW − ΦSE, ΦNESW = ΦNE − ΦSW . (D.6)
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Finally, auxiliary quantities are used in computing the updating formulas:

ρ+P =M(1, i, j) r43 − ϕuP M(2, i, j)− ϕvP M(3, i, j) + φ2 − φ1 + φ4 − φ3 + . . .

· · ·+ (φ5 + φ6 + φ7 + φ8)/4− b4 (ΦNW + ΦSE − ΦNE − ΦSW ) + . . .

· · ·+ b (puE − puW + pvN − pvS),

p+P ≡M+(1, i, j) = ρ+P/3, (D.7)

u+P ≡M+(2, i, j) = (φ1 + φ2 + (φ6 − φ5 − φ7 + φ8)/4 + . . .

· · · − a (puE − ϕuP + puW )− b4 (ΦNESW + ΦNWSE))/ρ
+
P , (D.8)

v+P ≡M+(3, i, j) = (φ3 + φ4 + (φ7 + φ8 − φ5 − φ6)/4 + . . .

· · · − a (pvN − ϕvP + pvS)− a4 (ΦNESW − ΦNWSE))/ρ
+
P , (D.9)

where r43 = 4/3, b = 2 − 2/ω, a4 = a/4, b = 2 − 2/ωp and b4 = b/4.
The previous optimized formulas are consistent with Eqs. (D.1-D.3) in case
ωp = ω, b = a and b4 = a4. Kinematic viscosity is controlled via the parameter
ω according to (12), whereas the parameter ωp is responsible of the artificial
compressibility. In particular, if ωp 6= ω, the first term in Eq. (B.16) becomes
proportional to ε2/νp, where νp is the value obtained by using ωp in Eq. (12).
Without additional computational costs, a proper choice of νp > ν allows to
reduce the compressibility error in case of under-resolved simulations.
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